精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知曲线的参数方程为为参数),以为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为

Ⅰ)求曲线的普通方程与曲线的直角坐标方程;

Ⅱ)设为曲线上的动点,求点上点的距离的最小值,并求此时点的坐标.

【答案】(Ⅰ)(Ⅱ)最小值为,此时点的坐标为

【解析】

(Ⅰ)由条件利用同角三角函数的基本关系把参数方程化为直角坐标方程,利用直角坐标和极坐标的互化公式,把极坐标方程化为直角坐标方程;()求得椭圆上的点到直线的距离为,可得的最小值,以及此时的的值,从而求得点的坐标.

(Ⅰ)对曲线

∴曲线的普通方程为

对曲线

∴曲线的直角坐标方程为

Ⅱ)设曲线上的任意一点为则点到曲线的距离,即时,,此时点的坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,过抛物线一点作两条直线分别交抛物线于斜率存在且倾斜角互补时

值;

直线上的截距时,面积最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某软件公司新开发一款学习软件,该软件把学科知识设计为由易到难共12关的闯关游戏.为了激发闯关热情,每闯过一关都奖励若干慧币(一种网络虚拟币).该软件提供了三种奖励方案:第一种,每闯过一关奖励80慧币;第二种,闯过第一关奖励8慧币,以后每一关比前一关多奖励8慧币;第三种,闯过第一关奖励1慧币,以后每一关比前一关奖励翻一番(即增加1倍).游戏规定:闯关者须于闯关前任选一种奖励方案.已知一名闯关者冲关数一定超过3关但不会超过9关,为了得到更多的慧币,他应如何选择奖励方案?

A.选择第一种奖励方案B.选择第二种奖励方案

C.选择第三种奖励方案D.选择的奖励方案与其冲关数有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】红铃虫是棉花的主要害虫之一,能对农作物造成严重伤害,每只红铃虫的平均产卵数y和平均温度x有关,现收集了以往某地的7组数据,得到下面的散点图及一些统计量的值.(表中

平均温度

21

23

25

27

29

32

35

平均产卵数/

7

11

21

24

66

115

325

27.429

81.286

3.612

40.182

147.714

1)根据散点图判断,(其中自然对数的底数)哪一个更适宜作为平均产卵数y关于平均温度x的回归方程类型?(给出判断即可,不必说明理由)并由判断结果及表中数据,求出yx的回归方程.(计算结果精确到小数点后第三位)

2)根据以往统计,该地每年平均温度达到28℃以上时红铃虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到28℃以上的概率为.

①记该地今后5年中,恰好需要3次人工防治的概率为,求的最大值,并求出相应的概率p.

②当取最大值时,记该地今后5年中,需要人工防治的次数为X,求X的数学期望和方差.

附:线性回归方程系数公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点为,离心率为,点P为椭圆C上一动点,且的面积最大值为O为坐标原点.

(1)求椭圆C的方程;

(2)设点为椭圆C上的两个动点,当为多少时,点O到直线MN的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为缓解日益拥堵的交通状况,不少城市实施车牌竞价策略,以控制车辆数量.某地车牌竞价的原则是:①“盲拍”,即所有参与竞拍的人都是网络报价,每个人并不知晓其他人的报价,也不知道参与当期竞拍的总人数;②竞价时间截止后,系统根据当期车牌配额,按照竞价人的出价从高到低分配名额.某人拟参加201810月份的车牌竞价,他为了预测最低成交价,根据竞拍网站的公告,统计了最近5个月参与竞拍的人数(见表):

月份

2018.04

2018.05

2018.06

2018.07

2018.08

月份编号t

1

2

3

4

5

竞拍人数y(万人)

0.5

0.6

m

1.4

1.7

1)由收集数据的散点图发现,可以线性回归模拟竞拍人数y(万人)与月份编号t之间的相关关系.现用最小二乘法求得y关于t的回归方程为,请求出表中的m的值并预测20189月参与竞拍的人数;

2)某市场调研机构对200位拟参加20189月车牌竞拍人员的报价价格进行了一个抽样调查,得到如下一个频数表:

报价区间(万元)

[12)

[23)

[34)

[45)

[56)

[67]

频数

20

60

60

30

20

10

i)求这200位竞拍人员报价的平均值(同一区间的报价可用该价格区间的中点值代替)

ii)假设所有参与竞拍人员的报价X服从正态分布,且(i)中所求的样本平均数的估值,.20189月实际发放车牌数量为3174,请你合理预测(需说明理由)竞拍的最低成交价.参考公式及数据:若随机变量Z服从正态分布,则:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为(其中为参数),以原点为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求曲线的焦点的极坐标;

2)若曲线的上焦点为,直线与曲线交于两点,,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱长为1的正方体中,是线段上的动点,则下列结论正确的是( ).

①异面直线所成的角为

③三棱锥的体积为定值

的最小值为2

A.①②③B.①②④C.③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数.

1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;

2)设x0f(x)的一个零点,证明曲线y=ln x 在点A(x0ln x0)处的切线也是曲线的切线.

查看答案和解析>>

同步练习册答案