【题目】在平面直角坐标系中,已知曲线的参数方程为(为参数),以为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求曲线的普通方程与曲线的直角坐标方程;
(Ⅱ)设为曲线上的动点,求点到上点的距离的最小值,并求此时点的坐标.
科目:高中数学 来源: 题型:
【题目】某软件公司新开发一款学习软件,该软件把学科知识设计为由易到难共12关的闯关游戏.为了激发闯关热情,每闯过一关都奖励若干慧币(一种网络虚拟币).该软件提供了三种奖励方案:第一种,每闯过一关奖励80慧币;第二种,闯过第一关奖励8慧币,以后每一关比前一关多奖励8慧币;第三种,闯过第一关奖励1慧币,以后每一关比前一关奖励翻一番(即增加1倍).游戏规定:闯关者须于闯关前任选一种奖励方案.已知一名闯关者冲关数一定超过3关但不会超过9关,为了得到更多的慧币,他应如何选择奖励方案?
A.选择第一种奖励方案B.选择第二种奖励方案
C.选择第三种奖励方案D.选择的奖励方案与其冲关数有关
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】红铃虫是棉花的主要害虫之一,能对农作物造成严重伤害,每只红铃虫的平均产卵数y和平均温度x有关,现收集了以往某地的7组数据,得到下面的散点图及一些统计量的值.(表中)
平均温度 | 21 | 23 | 25 | 27 | 29 | 32 | 35 | ||
平均产卵数/个 | 7 | 11 | 21 | 24 | 66 | 115 | 325 | ||
27.429 | 81.286 | 3.612 | 40.182 | 147.714 | |||||
(1)根据散点图判断,与(其中自然对数的底数)哪一个更适宜作为平均产卵数y关于平均温度x的回归方程类型?(给出判断即可,不必说明理由)并由判断结果及表中数据,求出y关x的回归方程.(计算结果精确到小数点后第三位)
(2)根据以往统计,该地每年平均温度达到28℃以上时红铃虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到28℃以上的概率为.
①记该地今后5年中,恰好需要3次人工防治的概率为,求的最大值,并求出相应的概率p.
②当取最大值时,记该地今后5年中,需要人工防治的次数为X,求X的数学期望和方差.
附:线性回归方程系数公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦点为,,离心率为,点P为椭圆C上一动点,且的面积最大值为,O为坐标原点.
(1)求椭圆C的方程;
(2)设点,为椭圆C上的两个动点,当为多少时,点O到直线MN的距离为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为缓解日益拥堵的交通状况,不少城市实施车牌竞价策略,以控制车辆数量.某地车牌竞价的原则是:①“盲拍”,即所有参与竞拍的人都是网络报价,每个人并不知晓其他人的报价,也不知道参与当期竞拍的总人数;②竞价时间截止后,系统根据当期车牌配额,按照竞价人的出价从高到低分配名额.某人拟参加2018年10月份的车牌竞价,他为了预测最低成交价,根据竞拍网站的公告,统计了最近5个月参与竞拍的人数(见表):
月份 | 2018.04 | 2018.05 | 2018.06 | 2018.07 | 2018.08 |
月份编号t | 1 | 2 | 3 | 4 | 5 |
竞拍人数y(万人) | 0.5 | 0.6 | m | 1.4 | 1.7 |
(1)由收集数据的散点图发现,可以线性回归模拟竞拍人数y(万人)与月份编号t之间的相关关系.现用最小二乘法求得y关于t的回归方程为,请求出表中的m的值并预测2018年9月参与竞拍的人数;
(2)某市场调研机构对200位拟参加2018年9月车牌竞拍人员的报价价格进行了一个抽样调查,得到如下一个频数表:
报价区间(万元) | [1,2) | [2,3) | [3,4) | [4,5) | [5,6) | [6,7] |
频数 | 20 | 60 | 60 | 30 | 20 | 10 |
(i)求这200位竞拍人员报价的平均值(同一区间的报价可用该价格区间的中点值代替);
(ii)假设所有参与竞拍人员的报价X服从正态分布,且为(i)中所求的样本平均数的估值,.若2018年9月实际发放车牌数量为3174,请你合理预测(需说明理由)竞拍的最低成交价.参考公式及数据:若随机变量Z服从正态分布,则:,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(其中为参数),以原点为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的焦点的极坐标;
(2)若曲线的上焦点为,直线与曲线交于,两点,,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,棱长为1的正方体中,是线段上的动点,则下列结论正确的是( ).
①异面直线与所成的角为
②
③三棱锥的体积为定值
④的最小值为2.
A.①②③B.①②④C.③④D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知函数.
(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;
(2)设x0是f(x)的一个零点,证明曲线y=ln x 在点A(x0,ln x0)处的切线也是曲线的切线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com