【题目】如图,过抛物线上一点,作两条直线分别交抛物线于,,当与的斜率存在且倾斜角互补时:
(Ⅰ)求的值;
(Ⅱ)若直线在轴上的截距时,求面积的最大值.
【答案】(I);(Ⅱ).
【解析】
试题分析:(I)设出,的点坐标,根据,得到,进而根据点在抛物线上,把换成,即可得出结果;(II)由,得出,设直线的方程为,与抛物线联立可得,又点到直线的距离为,所以,构造关于的函数,求导利用单调性求最值即可.
试题解析:解(Ⅰ)由抛物线过点,得,
设直线的斜率为,直线的斜率为,由、倾斜角互补可知,
即,
将,代入得.
(Ⅱ)设直线的斜率为,由,
得,
由(Ⅰ)得,将其代入上式得.
因此,设直线的方程为,由,消去得,
由,得,这时,,
,又点到直线的距离为,所以,
令,则由,令,得或.
当时,,所以单调递增,当时,,所以单调递减,故的最大值为,故面积的最大值为.
(附:,当且仅当时取等号,此求解方法亦得分)
科目:高中数学 来源: 题型:
【题目】如图,已知平面平面,四边形是正方形,四边形是菱形,且,,点、分别为边、的中点,点是线段上的动点.
(1)求证:;
(2)求三棱锥的体积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若方程有两个小于2的不等实根,求实数a的取值范围;
(2)若不等式对任意恒成立,求实数a的取值范围;
(3)若函数在[0,2]上的最大值为4,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设、分别为椭圆:的左、右两个焦点.
(Ⅰ)若椭圆上的点到、两点的距离之和等于6,写出椭圆的方程和焦点坐标;
(Ⅱ)设点是(1)中所得椭圆上的动点,求线段的中点M的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为、,椭圆上的点满足,且的面积为.
(1)求椭圆的方程;
(2)设椭圆的左、右顶点分别为、,过点的动直线与椭圆相交于、两点,直线与直线的交点为,证明:点总在直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正方体的棱长为1,分别是棱,的中点,过直线的平面分别与棱、交于,设,,给出以下四个命题:
①四边形为平行四边形;
②若四边形面积,,则有最小值;
③若四棱锥的体积,,则为常函数;
④若多面体的体积,,则为单调函数.
其中假命题为( )
A. ① ③ B. ② C. ③④ D. ④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆,圆.
(1)若过点的直线被圆截得的弦长为,求直线的方程;
(2)圆是以1为半径,圆心在圆:上移动的动圆 ,若圆上任意一点分别作圆 的两条切线,切点为,求的取值范围;
(3)若动圆同时平分圆的周长、圆的周长,则动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列的前三项分别为λ,6,3λ,前n项和为Sn,且Sk=165.
(1)求λ及k的值;
(2)设bn=,且数列的前n项和Tn,证明:≤Tn<1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com