精英家教网 > 高中数学 > 题目详情
设A={m+1,-3},B={2m-1,m-3}且A∩B={-3},
(1)求m的值
(2)求A∪B.
分析:(1)利用条件A∩B={-3},得m-3=-3或2m-1=-3.(2)利用集合的并集运算求解即可.
解答:解:(1)因为A∩B={-3},所以m-3=-3或2m-1=-3.
解得m=0或m=-1.
当m=0时,A={1,-3},B={-1,-3},满足A∩B={-3}.
当m=-1时,A={0,-3},B={-3,-4},满足A∩B={-3}.
所以m=0或m=-1.
(2)当m=0时,A={1,-3},B={-1,-3},A∪B={1,-1,-3}.
当m=-1时,A={0,-3},B={-3,-4},满足A∪B={0,-3,-4}.
点评:本题主要考查集合的基本运算,利用条件A∩B={-3},确定m是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设向量 
a
=(m+1,-3),
b
=(1,m-1),若
向量(
a
+
b
)⊥(
a
-
b
),求m的值

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={1,2,3,4},集合N={a,b,c},则从集合M到集合N的映射个数为___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

a=(m+1)i-3j,b=i+(m-1)j,(a+b)⊥(a-b),则m等于

A.2                    B.-2                   C.3                    D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:

(14分)已知关于x的二次函数f(x)=ax2-8bx+1.

(1)设集合M={1,2,3}和N={-1,1,2,3,4,5},从集合M中随机取一个数作为a,从N中随机取一个数作为b,求函数y=f(x)在区间[2,+∞)上是增函数的概率;

(2)设点(a,b)是区域内的随机点,求函数y=f(x)在区间[2,+∞)上是增函数的概率.

查看答案和解析>>

同步练习册答案