精英家教网 > 高中数学 > 题目详情

已知等差数列{an}中,a2=-6,a1+a9=0
(Ⅰ)求{an}的通项公式;
(Ⅱ)若数列{bn}满足数学公式,设Tn=b1b2…bn,且Tn=1,求n.

解:(Ⅰ)∵等差数列{an}中,a2=-6,a1+a9=0,∴a5=0.
设公差为d,则有 a5-a2=0+6=3d,∴d=2.
a1=a2 -d=-8.
∴an =a1+(n-1)d=2n-10.
(Ⅱ)∵,∴bn=22n-10
∴Tn=b1b2…bn =2-8•2-6•2-4…22n-10=2(n-9)n
再由Tn=1,可得 2(n-9)n=1,
∴n=9.
分析:(Ⅰ)由等差数列的定义和性质求出 a5=0,则由a5-a2=0+6=3d,求出d 的值,由a1=a2 -d=-8,由此可得an
(Ⅱ)求出bn=22n-10,化简 Tn=b1b2…bn 可得其值2(n-9)n=1,由此求得n的值.
点评:本题主要考查等差数列的定义和性质,等差数列的通项公式,等差数列的前n项和公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案