精英家教网 > 高中数学 > 题目详情
15.在A处有一轮船,油井D位于A的南偏东60°处,轮船的航行速度为30海里/小时,轮船先向北航行40分钟后到达B处,测得在油井D在B的南偏东30°,然后轮船改为沿东偏南30°航行,行驶80分钟到达C处,求C、D间的距离.

分析 在△ABD中,利用正弦定理可求得BD的长,在三角形△BDC中.利用余弦定理,可求C、D间的距离.

解答 解:在△ABP中,AB=30×$\frac{40}{60}$=20,∠ADB=30°,∠BAD=120°
由正弦定理知$\frac{AB}{sin∠BDA}=\frac{BD}{sin∥BAD}$得BD=20$\sqrt{3}$.
在△BDC中,BC=30×$\frac{80}{60}$=40,
又∠DBC=30°,
∴DC=$\sqrt{1200+1600-2×20\sqrt{3}×40×\frac{\sqrt{3}}{2}}$=20海里.

点评 本题的考点是解三角形的实际应用,主要考查将实际问题转化为数学问题,可把条件和问题放到三角形中,利用正弦定理及余弦定理求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在△ABC中,若sinC(cosA+cosB)=sinA+sinB,则△ABC的形状是(  )
A.等腰三角形B.直角三角形
C.等腰三角形或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若不等式x2+ax+1≥0对一切x∈(0,$\frac{1}{3}$]都成立,则实数a的最小值为-$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知关于x的不等式ax2+bx+c>0的解集为{x|-2<x<3},则关于x的不等式cx2+bx+a<0的解集为{x|-$\frac{1}{2}$<x<$\frac{1}{3}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若关于x的不等式-$\frac{1}{2}$x2+2x>mx的解集为{x|0<x<4},则实数m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.空间直角坐标系中点P(1,2,3)关于y轴的对称点的坐标为(  )
A.(3,2,1)B.(1,-2,3)C.(-1,2,-3)D.(1,2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆锥的底面半径为3,母线长为5,在圆锥内部放置一个内接圆柱(圆柱的一底面与圆锥的底面重合),
(Ⅰ)求圆柱的体积V与其底面半径r的函数关系式;
(Ⅱ)求圆柱的体积V最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知曲线Г1的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{5}cosθ}\\{y=-2+\sqrt{5}sinθ}\end{array}\right.$(θ为参数),直线Г2的参数方程为$\left\{\begin{array}{l}{x=1+tcosα}\\{y=-1+tsinα}\end{array}\right.$(t为参数).
(1)以原点为极点,x轴的非负半轴为极轴,建立极坐标系,求曲线Г1的极坐标方程;
(2)若直线Г2和曲线Г1相交于A,B两点,且|AB|=4,求直线Г2的倾斜角..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.有以下四个结论;①$(-\frac{2}{3})^{\frac{2}{3}}$<$(\frac{1}{2})^{\frac{1}{3}}$;②若幂函数f(x)的图象经过点(2,$\sqrt{2}$),则f(x)为偶函数;③函数y=log2(x2-4x+3)的单调增区间为(2,+∞);④函数y=0.5|x|的值域为(0,1].其中正确结论的序号是①④(把所有正确结论的序号都填上).

查看答案和解析>>

同步练习册答案