精英家教网 > 高中数学 > 题目详情
8.如图,△ABC的外接圆为⊙O,延长CB至Q,延长QA至P,使得QA成为QC,QB的等比中项.
(Ⅰ)求证:QA为⊙O的切线;
(Ⅱ)若AC恰好为∠BAP的平分线,AB=4,AC=6,求QA的长度.

分析 (Ⅰ)由已知可得QC•QB=QA2,即$\frac{QC}{QA}=\frac{QA}{QB}$,可得△QCA∽△QAB,进而∠QAB=QCA,根据弦切角定理的逆定理可得QA为⊙O的切线;
(Ⅱ)根据弦切角定理可得AC=BC=6,结合(I)中结论,可得QC:QA=AC:AB=6:4,进而得到答案.

解答 (Ⅰ)证明:∵QA成为QC,QB的等比中项,
∴QC•QB=QA2
于是$\frac{QC}{QA}=\frac{QA}{QB}$,
∴△QCA∽△QAB,
∴∠QAB=QCA,
根据弦切角定理的逆定理可得QA为⊙O的切线,(5分)
(Ⅱ)解:∵QA为⊙O的切线,
∴∠PAC=∠ABC,而AC恰好为∠BAP的平分线,
∴∠BAC=∠ABC,
于是AC=BC=6,
∴QC2-QA2=6QC,①
又由△QCA∽△QAB得
QC:QA=AC:AB=3:2,②
联合①②消掉QC,得QA=7.2.(10分)

点评 本题考查的知识点是弦切角定理及其逆定理,圆的切线的判定与性质,三角形相似的判定与性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.某人投篮一次投中的概率是$\frac{1}{3}$,设投篮5次,投中,投不中的次数分别是ξ,η,则事件“ξ≤η”的概率为(  )
A.$\frac{2}{9}$B.$\frac{64}{81}$C.$\frac{17}{81}$D.$\frac{1}{81}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x∈[0,1)}\\{4-2x,x∈[1,2]}\end{array}\right.$,若x0∈[0,1),且f[f(x0)]∈[0,1),则x0的取值范围是(  )
A.(log2$\frac{3}{2}$,1)B.(log2$\frac{2}{3}$,1)C.($\frac{2}{3}$,1)D.[0,$\frac{3}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=a\sqrt{x}-\frac{x^2}{e^x}({x>0})$,其中e为自然对数的底数.
(Ⅰ)当a=0时,判断函数y=f(x)极值点的个数;
(Ⅱ)若函数有两个零点x1,x2(x1<x2),设$t=\frac{x_2}{x_1}$,证明:x1+x2随着t的增大而增大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图随时,AB是⊙O的直径,C,D是⊙O上的两点,OC⊥AD.过点B作⊙O的切线PB交AD的延长线于点P,连接BC交AD于点E.
(1)求证:PE2=PD•PA;
(2)若AB=PB,求△CDE与△ABE面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在极坐标系中,过点$(1,\;\frac{π}{2})$且平行于极轴的直线方程是(  )
A.ρ=1B.ρsinθ=1C.ρcosθ=1D.ρ=2sinθ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义在区间(0,+∞)上的函数f(x)满足f(x)>0,且$\frac{2f(x)}{x}$<f′(x)$<\frac{3f(x)}{x}$(其中f′(x)是f(x)的导函数)恒成立,则(  )
A.$\frac{1}{3}$$<\frac{f(2)}{f(4)}$$<\frac{1}{2}$B.$\frac{1}{4}<\frac{f(2)}{f(4)}$$<\frac{1}{3}$C.$\frac{1}{8}$$<\frac{f(2)}{f(4)}$$<\frac{1}{4}$D.$\frac{1}{16}$$<\frac{f(2)}{f(4)}$$<\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,直线AB为圆O的切线,切点为B,点C在圆O上,∠ABC的平分线BE交圆O于点E,DB垂直BE交圆O于点D.
(1)证明:DB=DC;
(2)设圆O的半径为1,BC=$\sqrt{3}$,延长CE交AB于点F,求线段BF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,正四棱锥P-ABCD的体积为2,底面积为6,E为侧棱PC的中点,则异面直线PA与BE所成的角为60°

查看答案和解析>>

同步练习册答案