精英家教网 > 高中数学 > 题目详情

【题目】已知圆,直线

1)若直线与圆交于不同的两点,当时,求实数的值;

2)若是直线上的动点,过作圆的两条切线,切点为,试探究:直是否过定点.若存在,请求出定点的坐标;否则,说明理由.

【答案】1;(2)直线过定点

【解析】

1)由已知结合垂径定理求得圆心到直线的距离,再由点到直线的距离公式列式求得

2)解法1:设切点,动点,求出两条切线方程,计算出直线的方程,从而得到定点坐标;解法2:由题意可知,四点共圆且在以为直径的圆上,求出公共弦所在直线方程,再由直线系方程求得定点坐标.

1的距离

,解得.

2)解法1:设切点,动点,则圆在点处的切线方程为

,所以,即

同理,圆在点处的切线方程为

是两条切线的交点,

所以点的坐标都适合方程

上述方程表示一条直线,而过两点的直线是唯一的,

所以直线的方程为:.

则直线的方程为

,解得

故直线过定点.

解法2:由题意可知:四点共圆且在以为直径的圆上,

,则此圆的方程为:

即:

在圆上,

两圆方程相减得

,解得

故直线过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】销售某种活虾,根据以往的销售情况,按日需量x(公斤)属于[0,100),[100,200),[200,300),[300,400),[400,500] 进行分组,得到如图所示的频率分布直方图.这种活虾经销商进价成本为每公斤15当天进货当天以每公斤20元进行销售当天未售出的须全部以每公斤10元卖给冷冻库.某水产品经销商某天购进了300公斤这种活虾,设当天利润为Y元.

(1)Y关于x的函数关系式

(2)结合直方图估计利润Y不小于300元的概率

(3)在直方图的日需量分组中,以各组的区间中点值代表该组的各个值,日需量落入该区间的频率作为日需量取该区间中点值的概率,求Y的平均估计值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面是边长为3的正方形,平面与平面所成的角为.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题,其中所有正确命题的序号是__________

①抛物线的准线方程为

②过点作与抛物线只有一个公共点的直线仅有1条;

是抛物线上一动点,以为圆心作与抛物线准线相切的圆,则此圆一定过定点.

④抛物线上到直线距离最短的点的坐标为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若对任意恒成立,求实数的取值范围;

(2)当时,若函数有两个极值点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)若是奇函数,求的值,并判断的单调性(不用证明);

(2)若函数在区间(0,1)上有两个不同的零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当a=1时,写出的单调递增区间(不需写出推证过程);

(Ⅱ)当x>0时,若直线y=4与函数的图像交于A,B两点,记,求的最大值;

(Ⅲ)若关于x的方程在区间(1,2)上有两个不同的实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对数函数)和指数函数)互为反函数.已知函数,其反函数为

1)若函数定义域为,求实数的取值范围.

2)若为定义在上的奇函数,且时,.求的解析式.

3)定义在上的函数,如果满足:对任意的,存在常数,都有成立,则称函数上的有界函数,其中为函数的上界.若函数,当时,探究函数上是否存在上界,若存在求出的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ),是自然对数的底数.

(Ⅰ)当 时,求函数的零点个数;

(Ⅱ)若,求上的最大值.

查看答案和解析>>

同步练习册答案