精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,A(﹣20),B20),P为不在x轴上的动点,直线PAPB的斜率满足kPAkPB

1)求动点P的轨迹Γ的方程;

2)若MN是轨迹Γ上两点,kMN1,求OMN面积的最大值.

【答案】1y≠0);(2

【解析】

1)设Pxy)为轨迹Γ上任意一点,根据kPAkPB,得到,化简即得解;

2)设MNyx+b,联立得到韦达定理,利用弦长公式表示弦长|MN|O到直线MN的距离,继而表示OMN的面积,利用导数研究单调性,求最值即可.

1)设Pxy)为轨迹Γ上任意一点,则根据kPAkPB

整理得动点P的轨迹Γ的方程为:y≠0);

2)设MNyx+b,联立

整理得5x2+8bx+4b240

5b20

Mx1y1),Nx2y2),

x1+x2bx1x2b21),

|MN||x1x2|

O到直线MN的距离d

所以OMN面积S

fb)=5b2b4

fb)=10b4b30

解得b0b±

又因为5b20

b0b±

S0)=0S±

OMN的面积S最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,平面DAC⊥底面ABCADCDOAC的中点,EBD的中点.

(1)证明:DO⊥底面ABC

(2)求二面角D-AE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设,且,记;

(1)设,其中,试求的单调区间;

(2)试判断弦的斜率的大小关系,并证明;

(3)证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4cos ωx·sina(ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.

(1)aω的值;

(2)求函数f(x)[0,π]上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过站的地铁票价如下表:

乘坐站数

票价(元)

现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过站.甲、乙乘坐不超过站的概率分别为 ;甲、乙乘坐超过站的概率分别为 .

(1)求甲、乙两人付费相同的概率;

(2)设甲、乙两人所付费用之和为随机变量,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知aR,命题p:“x[1,2],x2﹣a≥0”,命题q:“xR,x2+2ax+2﹣a=0”.

(1)若命题p为真命题,求实数a的取值范围;

(2)若命题“pq”为真命题,命题“pq”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=ex+ax2+bxe为自然对数的底,ab为常数),曲线yfx)在x0处的切线经过点A(﹣1,﹣1

1)求实数b的值;

2)是否存在实数a,使得曲线yfx)所有切线的斜率都不小于2?若存在,求实数a的取值集合,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在.

1)求居民收入在的频率;

2)根据频率分布直方图算出样本数据的中位数;

3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在的这段应抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改革开放40年来,体育产业蓬勃发展反映了健康中国理念的普及.下图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图表示体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).

(Ⅰ)从2007年至2016年这十年中随机选出一年,求该年体育产业年增加值比前一年多亿元以上的概率;

(Ⅱ)从2007年至2011年这五年中随机选出两年,求至少有一年体育产业年增长率超过25%的概率;

(Ⅲ)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)

查看答案和解析>>

同步练习册答案