【题目】已知函数,其中.
(1)当时,求曲线在点处的切线方程;
(2)当时,求函数的单调区间与极值.
【答案】(1)(2)见解析
【解析】试题分析: (1)利用导数的几何意义:切线斜率等于,再根据点斜式求切线方程;(2)先明确函数的定义域,再求函数导数,研究导函数在定义域上的零点: 由,得,分类讨论两个零点的大小,再结合列表确定函数的单调区间与极值.
试题解析:(1)当时, ,此时,
所以
又因为切点为,所以切线方程
曲线在点处的切线方程为
(2)由于,
所以
由,得
(1)当时,则,易得在区间, 内为减函数,
在区间为增函数,故函数在处取得极小值
函数在处取得极大值
当时,则,易得在区间, 内为增函数,
在区间为减函数,故函数在处取得极小值;
函数 在处取得极大值
点睛:本题考查导数的几何意义,属于基础题目. 函数y=f(x)在x=x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,y0)处的切线的斜率,过点P的切线方程为: .求函数y=f(x)在点P(x0,y0)处的切线方程与求函数y=f(x)过点P(x0,y0)的切线方程意义不同,前者切线有且只有一条,且方程为y-y0=f′(x0)(x-x0),后者可能不只一条.
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn , 已知2Sn=3n+3.
(Ⅰ)求{an}的通项公式;
(Ⅱ)若数列{bn},满足anbn=log3an , 求{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把函数y=sin3x的图象向右平移 个长度单位,所得曲线的对应函数式( )
A.y=sin(3x﹣ )
B.y=sin(3x+ )
C.y=sin(3x﹣ )
D.y=sin(3x+ )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn , 且a3=7,a5+a7=26
(1)求an及Sn;
(2)令bn= (n∈N*)求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=x+ (a>0)在区间 上单调递减,在区间 上单调递增;函数
(1)请写出函数f(x)=x2+ (a>0)与函数g(x)=xn+ (a>0,n∈N,n≥3)在(0,+∞)的单调区间(只写结论,不证明);
(2)求函数h(x)的最值;
(3)讨论方程h2(x)﹣3mh(x)+2m2=0(0<m≤30)实根的个数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com