精英家教网 > 高中数学 > 题目详情
12.若f(x)=-x2+2ax与g(x)=$\frac{a}{x+1}$在区间(1,+∞)上都是减函数,则a的取值范围是(  )
A.(-1,0)∪(0,1)B.(-1,0)∪(0,1]C.(0,1)D.(0,1]

分析 若f(x)=-x2+2ax与g(x)=$\frac{a}{x+1}$在区间(1,+∞)上都是减函数,则$\left\{\begin{array}{l}a≤1\\ a>0\end{array}\right.$,解得a的取值范围.

解答 解:∵f(x)=-x2+2ax的图象是开口朝下,且以直线x=a为对称轴的抛物线,
故函数的单调递减区间为[a,+∞),
g(x)=$\frac{a}{x+1}$在a>0时的单调递减区间为(-∞,-1),(-1,+∞),
又∵f(x)=-x2+2ax与g(x)=$\frac{a}{x+1}$在区间(1,+∞)上都是减函数,
∴$\left\{\begin{array}{l}a≤1\\ a>0\end{array}\right.$,
解得a∈(0,1],
故选:D

点评 本题考查的知识点是二次函数的性质,反比例函数的性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数f(x)满足f(x)=f(2-x),x∈R,且当x≤1时,f(x)=x3-x2-4x+4,则方程f(x)=0的所有实数根之和为(  )
A.2B.3C.4D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.解方程:x2-2|x-1|-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数$f(x)=|{x+\frac{t}{2}}|+\frac{{8-{t^2}}}{4}({x∈R})$,若函数F(x)=f[f(x)]与y=f(x)在x∈R时有相同的值域,实数t的取值范围是(-∞,-2)∪(4,+∞)..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图长方体ABCD-A1B1C1D1中,E,F,G分别是棱AB,DC,D1C1的中点.
求证:(1)EG∥平面ADD1A1
(2)平面EFG⊥平面A1B1CD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=sinx•$\sqrt{3}$cosx(0≤x<2π)取最大值时,x=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\overrightarrow{m}$=(2cosx+2$\sqrt{3}$sinx,1),$\overrightarrow{n}$=(cosx,-y),且满足$\overrightarrow{m}$•$\overrightarrow{n}$=0,将y表示为x的函数,并求f(x)的最小周期.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知全集U=R,集合A={x|x+1<0},B={x|x2+3x<0},则 (∁UA)∩B等于(  )
A.{x|-3<x<0}B.{x|-1≤x<0}C.{x|x<-1}D.{x|-1<x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知二面角α-l-β,空间中有一点A,且AC⊥α于C,AB⊥β于B,若∠BAC=75°,则二面角α-l-β的大小为75°或105°.

查看答案和解析>>

同步练习册答案