精英家教网 > 高中数学 > 题目详情
①一个命题的逆命题为真,它的否命题也一定为真;
②在△ABC中,“∠B=60°”是“∠A,∠B,∠C三个角成等差数列”的充要条件;
x>1
y>2
x+y>3
xy>2
的充要条件;  
④“am2<bm2”是“a<b”的充分必要条件;
⑤△ABC中,“sinA<sinB”是“∠A<∠B”的充要条件;
以上说法中,判断错误的有
 
考点:命题的真假判断与应用
专题:简易逻辑
分析:根据题意,依次分析4个命题:对于①,由一个命题的逆命题与其否命题互为逆否命题,而互为逆否命题的两个命题同真同假,结合题意可得①正确,对于②,由∠B=60°,易得∠A+∠C=2∠B,可得∠A,∠B,∠C三个角成等差数列;反之由∠A,∠B,∠C三个角成等差数列,可得∠A+∠C=2∠B,又由∠A+∠B+∠C=180°,则∠B=60°,综合可得②正确;对于③举出反例,x=
1
2
,y=
9
2
,可得
x>1
y>2
x+y>3
xy>2
的不必要条件,即可得③错误;对于④,举出反例,m=0,易得“am2<bm2”是“a<b”的不必要条件,可得④错误;综合可得答案;对于⑤,对B分类讨论,能够得到sinA<sinB⇒∠A<∠B,∠A<∠B⇒sinA<sinB,命题⑤正确.
解答: 解:①、一个命题的逆命题与其否命题互为逆否命题,则若其逆命题为真,其否命题也一定为真,①正确;
②、若∠B=60°,则∠A+∠C=120°,有∠A+∠C=2∠B,则∠A,∠B,∠C三个角成等差数列,
反之若∠A,∠B,∠C三个角成等差数列,有∠A+∠C=2∠B,又由∠A+∠B+∠C=180°,则∠B=60°,
故在△ABC中,“∠B=60°”是“∠A,∠B,∠C三个角成等差数列”的充要条件,②正确;
③、当x=
1
2
,y=
9
2
,则满足
x+y>3
xy>2
,而不满足
x>1
y>2
,则
x>1
y>2
x+y>3
xy>2
的不必要条件,③错误;
④、若a<b,当m=0时,有am2=bm2,则“am2<bm2”是“a<b”的不必要条件,④错误;
⑤、△ABC中,若B>A,当B不超过90°时,显然可得出sinB>sinA,当B是钝角时,由于
π
2
>π-B>A,可得sin(π-B)=sinB>sinA,即 B>A是sinB>sinA的充分条件,当sinB>sinA时,亦可得B>A,“sinA<sinB”是“∠A<∠B”的充要条件,命题⑤正确.
故答案为③④.
点评:本题考查命题正误的判断,一般涉及知识点较多;注意合理运用反例,来判断命题的错误,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x+a
x+1
(x≥0)的最小值为2
2
,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱柱ADF-BCE中,DF⊥平面ABCD,AD=DC,G是DF的中点
(Ⅰ)求证:BF∥平面ACG;
(Ⅱ)求证:平面ACG⊥平面BDF.

查看答案和解析>>

科目:高中数学 来源: 题型:

若全集U={1,2,3,4,5,6,7,8},B={x|1≤x≤5,x∈Z},C={x|2<x<9,x∈Z}.求(∁UB)∪(∁UC).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于E,交DP于F.
求证:四边形BCFE是梯形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2x+sinxcosx-
1
2

(1)求函数f(x)的最大值和最小正周期;
(2)求函数f(x)的最大值及取最大值时x的取值集合;
(3)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

若原点和点(1,1)都在直线x+y=a的同一侧,则a的取值范围是(  )
A、a<0或a>2
B、0<a<2
C、a=0或a=2
D、0≤a≤2

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
y≥0
y≤-|x|+2
的解集对应的平面区域面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2-2x+4y-4=0,直线l:y=kx-1.
(1)当圆C被直线l平分,求k值
(2)在圆C上是否存在A,B两点关于直线y=kx-1对称,且OA⊥OB,若存在,求出直线AB的方程;若不存在,说明理由?

查看答案和解析>>

同步练习册答案