精英家教网 > 高中数学 > 题目详情
如图所示,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于E,交DP于F.
求证:四边形BCFE是梯形.
考点:直线与平面平行的性质,直线与平面平行的判定
专题:证明题,空间位置关系与距离
分析:证明BC∥平面PAD,可得BC∥EF,再证明BC≠EF,即可得出结论.
解答: 证明:∵四边形ABCD为矩形,
∴BC∥AD,
∵AD?平面PAD,BC?平面PAD,
∴BC∥平面PAD.
∵平面BCFE∩平面PAD=EF,∴BC∥EF.
∵AD=BC,AD≠EF,∴BC≠EF,
∴四边形BCFE是梯形.
点评:本题考查直线与平面平行的判定与性质,考查学生分析解决问题的能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知线段AB的端点B的坐标是(4,3),端点A在圆x2+y2+2x-3=0上运动,求线段AB上离B较近的三等分点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A=
π
3
,AB=4且S△ABC=
3
,则BC边的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

小路、小华与小敏三位同学讨论一道数学题,当他们每个人都把自己的解法说出来以后,小路说:“我做错了,”小华说:“小路做对了,”小敏说:“我做错了.”老师看过他们的答案并听了他们以上的陈述之后说:“你们三位同学中只有一人做对了,只有一人说对了.”那么请问:根据老师的回答,谁做对了呢?(  )
A、小路B、小华
C、小敏D、不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:(x-2)2+(y+4)2=2,点P是圆O上的一动点,则
x2+y2
的最大值是
 
; 
y
x
的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

①一个命题的逆命题为真,它的否命题也一定为真;
②在△ABC中,“∠B=60°”是“∠A,∠B,∠C三个角成等差数列”的充要条件;
x>1
y>2
x+y>3
xy>2
的充要条件;  
④“am2<bm2”是“a<b”的充分必要条件;
⑤△ABC中,“sinA<sinB”是“∠A<∠B”的充要条件;
以上说法中,判断错误的有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(-1,3),B(3,5)关于直线ax+y-b=0对称,则
a
b
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1+sin2x,sinx-cosx),
b
=(1,sinx+cosx),函数f(x)=
a
b

(Ⅰ)求f(x)的最大值及相应的x的值;
(Ⅱ)在△ABC中,a,b,c分别是三个内角A,B,C所对边,若f(
A
2
)=2,a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=kx+b与函数y=
kb
x
在同一坐标系中的大致图象正确的是(  )
A、
B、
C、
D、

查看答案和解析>>

同步练习册答案