精英家教网 > 高中数学 > 题目详情

【题目】已知函数fxx2+ax+lnxaR

1)讨论函数fx)的单调性;

2)若fx)存在两个极值点x1x2|x1x2|,求|fx1)﹣fx2|的最大值.

【答案】1)答案不唯一,具体见解析(2

【解析】

1)求导可得,再分讨论0的大小关系,进而得出单调性情况;

2)表示出,构造函数,利用导数求其最大值即可.

1,设μx)=x2+ax+1,则μ0)=10,对称轴为

①当,即a0时,在(0+∞)上,0fx)是增函数;

②当,即a0时,a240a=±2

i)当﹣2a0时,在(0+∞)上,0fx)是增函数;

ii)当a<﹣2时,令0

上,0fx)是增函数;

上,0fx)是减函数;

2)由(1)知,fx)得两个极值点x1x2满足x2+ax+10,故x1+x2=﹣ax1x21

不妨设0x11x2,则fx)在(x1x2)上是减函数,

,设函数,则

ht)在(1+∞)上为增函数,

,则,解得1x22,故

|fx1)﹣fx2|的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,平面平面PADE的中点,FDC上一点,GPC上一点,且.

1)求证:平面平面PAB

2)若,求直线PB与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某项针对我国《义务教育数学课程标准》的研究中,列出各个学段每个主题所包含的条目数(如下表),下图是统计表的条目数转化为百分比,按各学段绘制的等高条形图,由图表分析得出以下四个结论,其中错误的是(

A.除了综合实践外,其它三个领域的条目数都随着学段的升高而增加,尤其图象几何在第三学段增加较多,约是第二学段的.

B.所有主题中,三个学段的总和图形几何条目数最多,占50%,综合实践最少,约占4% .

C.第一、二学段数与代数条目数最多,第三学段图形几何条目数最多.

D.数与代数条目数虽然随着学段的增长而增长,而其百分比却一直在减少.“图形几何条目数,百分比都随学段的增长而增长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某初中学校学生睡眠状况,在该校全体学生中随机抽取了容量为120的样本,统计睡眠时间(单位:.经统计,时间均在区间内,将其按分成6组,制成如图所示的频率分布直方图:

1)世界卫生组织表明,该年龄段的学生睡眠时间服从正态分布,其标准为:该年龄段的学生睡眠时间的平均值,方差.根据原则,用样本估计总体,判断该初中学校学生睡眠时间在区间上是否达标?

(参考公式:

2)若规定睡眠时间不低于为优质睡眠.已知所抽取的这120名学生中,男、女睡眠质量人数如下列联表所示:

优质睡眠

非优质睡眠

合计

60

19

合计

将列联表数据补充完整,并判断是否有的把握认为优质睡眠与性别有关系,并说明理由;

下面的临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线lxty+10t0)和抛物线Cy24x相交于不同两点AB,设AB的中点为M,抛物线C的焦点为F,以MF为直径的圆与直线l相交另一点为N,且满足|MN||NF|,则直线l的方程为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: 经过点P(2,1),且离心率为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设O为坐标原点,在椭圆短轴上有两点MN满足,直线PM、PN分别交椭圆于A,B.探求直线AB是否过定点,如果经过定点请求出定点的坐标,如果不经过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的参数方程为是参数),以原点为极点,轴的非负半轴

为极轴,建立极坐标系,曲线的极坐标方程为

(Ⅰ)求直线的普通方程与曲线的直角坐标方程;

(Ⅱ)设点在曲线上,曲线在点处的切线与直线垂直,求点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某果园今年的脐橙丰收了,果园准备利用互联网销售.为了更好的销售,现随机摘下了个脐橙进行测重,其质量分布在区间内(单位:克),统计质量的数据作出频率分布直方图如下图所示:

1)按分层抽样的方法从质量落在的脐橙中随机抽取个,再从这个脐橙中随机抽个,求这个脐橙质量都不小于克的概率;

2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该果园的脐橙树上大约还有个脐橙待出售,某电商提出两种收购方案:甲:所有脐橙均以/千克收购;乙:低于克的脐橙以/个收购,高于或等于克的以/个收购.请通过计算为该果园选择收益最好的方案.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数的图象在点处的切线方程为.

1)讨论的导函数的零点的个数;

2)若,且上的最小值为,证明:当时,.

查看答案和解析>>

同步练习册答案