精英家教网 > 高中数学 > 题目详情
20.已知lga,lgb是方程x2-4x+1=0的两个根,求(1g$\frac{b}{a}$)2的值.

分析 根据韦达定理求出lga+lgb=4,lga•lgb=1,将(1g$\frac{b}{a}$)2转化为:(lga+lgb)2-4lgalgb,代入求出即可

解答 解:∵lga+lgb=4,lga•lgb=1,
∴则(1g$\frac{b}{a}$)2=(lga-lgb)(lga-lgb)
=(lga+lgb)2-4lgalgb
=16-4=12.

点评 本题考查的知识点是对数的运算性质,熟练掌握对数的运算性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.y=$\sqrt{x-2}$-x(x≥3)的值域为(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求下列各式的值:
(1)(lg5)2+lg2•lg5+lg2+2${\;}^{lo{g}_{2}3}$.
(2)lg14-2lg$\frac{7}{3}$-lg18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.计算:2${\;}^{2+lo{g}_{2}3}$+3${\;}^{2-lo{g}_{3}9}$=13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列各式的值:
(1)($\root{3}{2}×\sqrt{3}$)6+($\sqrt{2\sqrt{2}}$)${\;}^{\frac{4}{3}}$-4×($\frac{16}{49}$)${\;}^{-\frac{1}{2}}$-$\root{4}{2}$×80.25+(-2015)0
(2)$\frac{1}{2}$lg$\frac{32}{49}$-$\frac{4}{3}$lg$\sqrt{8}$+lg$\sqrt{245}$+(lg2)•lg50+lg25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算log5$\sqrt{\frac{6}{5}}$+log5$\sqrt{\frac{1}{6}}$+log4$\sqrt{8}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等差数列公差为d,且an≠0,d≠0,则$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$可化简为(  )
A.$\frac{nd}{{a}_{1}({a}_{1}+nd)}$B.$\frac{n}{{a}_{1}({a}_{1}+nd)}$C.$\frac{d}{{a}_{1}({a}_{1}+nd)}$D.$\frac{n+1}{{a}_{1}[{a}_{1}+(n+1)d]}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设M,N是△ABC所在平面内不同的两点,且$\overrightarrow{AM}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$,则△ABM与△ABN的面积比$\frac{{S}_{△ABM}}{{S}_{△ABN}}$为(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{3}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax(x+1)-lnx.
(1)当a=1时,求f(x)在(1,f(1))处的切线方程;
(2)若函数g(x)=f(x)+lnx-ax2+ex,当a<-1时,求g(x)的极值.

查看答案和解析>>

同步练习册答案