精英家教网 > 高中数学 > 题目详情
12.已知等差数列公差为d,且an≠0,d≠0,则$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$可化简为(  )
A.$\frac{nd}{{a}_{1}({a}_{1}+nd)}$B.$\frac{n}{{a}_{1}({a}_{1}+nd)}$C.$\frac{d}{{a}_{1}({a}_{1}+nd)}$D.$\frac{n+1}{{a}_{1}[{a}_{1}+(n+1)d]}$

分析 由已知条件利用等差数列的通项公式得$\frac{1}{{a}_{n}{a}_{n+1}}=\frac{1}{d}(\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}})$,由此能求出$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$的值.

解答 解:∵等差数列公差为d,且an≠0,d≠0,
∴$\frac{1}{{a}_{n}{a}_{n+1}}=\frac{1}{d}(\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}})$,
∴$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$
=$\frac{1}{d}(\frac{1}{{a}_{1}}-\frac{1}{{a}_{2}}+\frac{1}{{a}_{2}}-\frac{1}{{a}_{3}}+…+\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}})$
=$\frac{1}{d}(\frac{1}{{a}_{1}}-\frac{1}{{a}_{n+1}})$
=$\frac{n}{{a}_{1}•{a}_{n+1}}$
=$\frac{n}{{a}_{1}({a}_{1}+nd)}$.
故选:B.

点评 本题考查有关等差数列的求值,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.△ABC中,已知cosA•cosB•cosC<0,判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.2${\;}^{lo{g}_{4}(\sqrt{3}+2)^{2}}$+3${\;}^{lo{g}_{9}(\sqrt{3}-2)^{2}}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知lga,lgb是方程x2-4x+1=0的两个根,求(1g$\frac{b}{a}$)2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算:
(1)($\root{4}{{b}^{-\frac{2}{3}}}$)${\;}^{-\frac{2}{3}}$(b>0);
(2)(0.0081)${\;}^{-\frac{1}{4}}$-[3×($\frac{7}{8}$)0]-1•[81-0.25+(3$\frac{3}{8}$)${\;}^{-\frac{1}{3}}$]${\;}^{-\frac{1}{2}}$-10×0.027${\;}^{\frac{1}{3}}$;
(3)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4{b}^{\frac{2}{3}}+2•\root{3}{ab}+a^\frac{2}{3}}$÷(1-2•$\root{3}{\frac{b}{a}}$)×$\root{3}{ab}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.2000年我国人均收人765美元,到2020年人民生活达到小康以上的水平,人均收人争取达到2451美元,则年平均增长率为6%.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx+$\frac{1-x}{ax}$.
(1)若函数f(x)在(1,+∞)上为增函数,求a的取值范围;
(2)设数列{bn}的前n项和为Sn,其中bn=$\frac{1}{n}$,求证:n≥2时,1+lnn>Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是个半圆,固定
点E为CD的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆(MN和AB,CD不重合).
(Ⅰ)当MN和AB之间的距离为1米时,求此时三角通风窗EMN的通风面积;
(Ⅱ)设MN与AB之间的距离为x米,试将三角通风窗EMN的通风面积S(平方米)表示成关于x的函数S=f(x)
(Ⅲ)当MN与AB之间的距离为多少米时,三角通风窗EMN的通风面积最大?并求出这个最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.用长度为24m的材料围成一矩形场地,并且中间要用该材料加两道隔墙,要使矩形的面积最大,则隔墙的长度为多少m?最大面积为多少?

查看答案和解析>>

同步练习册答案