精英家教网 > 高中数学 > 题目详情
4.用长度为24m的材料围成一矩形场地,并且中间要用该材料加两道隔墙,要使矩形的面积最大,则隔墙的长度为多少m?最大面积为多少?

分析 设隔墙的长度为xm,面积为Sm2.则S=x$\frac{24-4x}{2}({0<x<6})$,利用二次函数的单调性即可得出.

解答 解:设隔墙的长度为xm,面积为Sm2
则S=x×$\frac{24-4x}{2}({0<x<6})$,
∴S=x(12-2x)=-2x2+12x
=-2(x-3)2+18(0<x<6)
当x=3时,Smax=18m2

点评 本题考查了二次函数的单调性、函数的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知等差数列公差为d,且an≠0,d≠0,则$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$可化简为(  )
A.$\frac{nd}{{a}_{1}({a}_{1}+nd)}$B.$\frac{n}{{a}_{1}({a}_{1}+nd)}$C.$\frac{d}{{a}_{1}({a}_{1}+nd)}$D.$\frac{n+1}{{a}_{1}[{a}_{1}+(n+1)d]}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某工厂产值月平均增长率为P,求该工厂的年增长率为(1+p)11-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax(x+1)-lnx.
(1)当a=1时,求f(x)在(1,f(1))处的切线方程;
(2)若函数g(x)=f(x)+lnx-ax2+ex,当a<-1时,求g(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设f(cosθ)=cos2θ-6cosθ,则f(2sinθ)的最小值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.数列{an}的通项公式an=ncos$\frac{nπ}{2}$+1,前n项和为Sn,则S1=1,S2015=1007.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,曲线y=f(x)在点(1,f(1))处的切线为l,点(an,2an+1)在l上,且a1=1,则a8=(  )
A.-$\frac{7}{2}$B.-4C.-$\frac{9}{2}$D.-$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a,b,c,d∈(0,+∞),求证ac+bd≤$\sqrt{{(a}^{2}+{b}^{2})({c}^{2}+{d}^{2})}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知i是虚数单位,若$z=\frac{a+i}{{a+{i^{2015}}}}$是纯虚数,则实数a的值为(  )
A.1B.±1C.2D.±2

查看答案和解析>>

同步练习册答案