精英家教网 > 高中数学 > 题目详情
15.某工厂产值月平均增长率为P,求该工厂的年增长率为(1+p)11-1.

分析 设1月份的产值为1,该工厂的年增长率为x,则(1+p)11=1+x,解出即可.

解答 解:设1月份的产值为1,该工厂的年增长率为x,
则(1+p)11=1+x,
解得x=(1+p)11-1,
故答案为:(1+p)11-1.

点评 本题考查了指数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.2${\;}^{lo{g}_{4}(\sqrt{3}+2)^{2}}$+3${\;}^{lo{g}_{9}(\sqrt{3}-2)^{2}}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx+$\frac{1-x}{ax}$.
(1)若函数f(x)在(1,+∞)上为增函数,求a的取值范围;
(2)设数列{bn}的前n项和为Sn,其中bn=$\frac{1}{n}$,求证:n≥2时,1+lnn>Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是个半圆,固定
点E为CD的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆(MN和AB,CD不重合).
(Ⅰ)当MN和AB之间的距离为1米时,求此时三角通风窗EMN的通风面积;
(Ⅱ)设MN与AB之间的距离为x米,试将三角通风窗EMN的通风面积S(平方米)表示成关于x的函数S=f(x)
(Ⅲ)当MN与AB之间的距离为多少米时,三角通风窗EMN的通风面积最大?并求出这个最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设a,b为不重合的两条直线,α,β为不重合的两个平面,给出下列命题:
(1)若a∥α且b∥α,则a∥b;
(2)如果平面α内的两条相交的直线a,b都平行于平面β,那么α∥β;
(3)如果a,b为异面直线,那么a,b所成的角θ的范围是0<θ<π;
(4)如果a,b为异面直线,那么过a,b外一点有且仅有一个平面α与a,b都平行;
上面命题中,所有假命题的序号是(1)(3)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.将f(x)=2sinx的图象向右平移φ(0<φ<π)个单位所得图象对应的函数是偶函数,则φ的值为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设x>y>0,则下列各式中正确的是(  )
A.x>$\frac{x+y}{2}$>$\sqrt{xy}$>yB.y>$\frac{x+y}{2}$>$\sqrt{xy}$>xC.x>$\frac{x+y}{2}$>y>$\sqrt{xy}$D.y>$\frac{x+y}{2}$≥$\sqrt{xy}$>x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.用长度为24m的材料围成一矩形场地,并且中间要用该材料加两道隔墙,要使矩形的面积最大,则隔墙的长度为多少m?最大面积为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.定义在R上的偶函数f(x),且f(x)在[0,+∞)上单调递减,则不等式f(lgx)<f(1)的解集是($\frac{1}{10}$,10).

查看答案和解析>>

同步练习册答案