精英家教网 > 高中数学 > 题目详情
设直线x=m与曲线f(x)=x2+1,g(x)=2lnx的图象分别交于点A,B,则|AB|的最小值为
 
分析:当x=m时,|AB|=m2+1-2lnm,然后利用导数求出函数的最小值即可.
解答:解:当x=m时,|AB|=m2+1-2lnm,m>0,
设f(m)=|AB|=m2+1-2lnm,
则f'(m)=2m-
2
m
=
2(m2-1)
m

由f'(m)>0得m>1,此时函数单调递增,
由f'(m)<0得0<m<1,此时函数单调递减,
即当m=1时,函数取得极小值,同时也是最小值为f(1)=1+1-2ln1=2.
故答案为:2;
点评:本题主要考查函数最值的求法,利用导数研究函数的极值是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2lnx与g(x)=a2x2+ax+1(a>0)
(1)设直线x=1与曲线y=f(x)和y=g(x)分别相交于点P,Q,且曲线y=f(x)和y=g(x)在点P,Q处的切线平行,求实数a的值;
(2)f′(x)为f(x)的导函数,若对于任意的x∈(0,+∞),e
1
f′(x)
-mx≥0
恒成立,求实数m的最大值;
(3)在(2)的条件下且当a取m最大值的
2
e
倍时,当x∈[1,e]时,若函数h(x)=f(x)-kf′(x)的最小值恰为g(x)的最小值,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=21nx与g(x)=a2x2+ax+1(a>0).
(1)设直线x=l与曲线y=f(x)和y=g(x)分别相交于点P,Q且曲线y=f(x)和y=g(x)在点P,Q处的切线平行,求实数a的值;
(2)f′(x)为f(x)的导函数,若对于任意的x∈(0,+∞),e
1f(x)
-mx≥0恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=21nx与g(x)=a2x2+ax+1(a>0).
(1)设直线x=l与曲线y=f(x)和y=g(x)分别相交于点P,Q且曲线y=f(x)和y=g(x)在点P,Q处的切线平行,求实数a的值;
(2)f′(x)为f(x)的导函数,若对于任意的x∈(0,+∞),数学公式-mx≥0恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省泉州一中高三(下)5月月考数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=2lnx与g(x)=a2x2+ax+1(a>0)
(1)设直线x=1与曲线y=f(x)和y=g(x)分别相交于点P,Q,且曲线y=f(x)和y=g(x)在点P,Q处的切线平行,求实数a的值;
(2)f′(x)为f(x)的导函数,若对于任意的x∈(0,+∞),恒成立,求实数m的最大值;
(3)在(2)的条件下且当a取m最大值的倍时,当x∈[1,e]时,若函数h(x)=f(x)-kf′(x)的最小值恰为g(x)的最小值,求实数k的值.

查看答案和解析>>

同步练习册答案