分析 利用分段函数的解析式,求解函数值即可.
解答 解:函数$f(x)=\left\{\begin{array}{l}{(\frac{1}{2})^x},x≥3\\ f(x+1),x<3\end{array}\right.$,$1-lo{g}_{\frac{1}{2}}3<3$,$f(1-lo{g}_{\frac{1}{2}}3)$=$f(2-lo{g}_{\frac{1}{2}}3)$=${(\frac{1}{2})}^{2-lo{g}_{\frac{1}{2}}3}$=$\frac{1}{4}×\frac{1}{3}$=$\frac{1}{12}$.
故答案为:$\frac{1}{12}$.
点评 本题考查分段函数的应用,函数值的求法,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | $±2\sqrt{2}$ | C. | 2 | D. | 64 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | b<a<c | C. | c<b<a | D. | c<a<b |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(3)<f(1)<f(2) | B. | f(1)<f(2)<f(3) | C. | f(2)<f(1)<f(3) | D. | f(3)<f(2)<f(1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x1)<0,f(x2)<0 | B. | f(x1)<0,f(x2)>0 | C. | f(x1)>0,f(x2)<0 | D. | f(x1)>0,f(x2)>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com