
解:(Ⅰ)当a=-2时,求不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0.
设y=|2x-1|+|2x-2|-x-3,则 y=

,它的图象如图所示:
结合图象可得,y<0的解集为(0,2),故原不等式的解集为(0,2).
(Ⅱ)设a>-1,且当

时,f(x)=1+a,不等式化为 1+a≤x+3,故 x≥a-2对

都成立.
故-

≥a-2,解得 a≤

,故a的取值范围为(-1,

].
分析:(Ⅰ)当a=-2时,求不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0.设y=|2x-1|+|2x-2|-x-3,画出函数y的图象,数形结合可得结论.
(Ⅱ)不等式化即 1+a≤x+3,故 x≥a-2对

都成立.故-

≥a-2,由此解得a的取值范围.
点评:本题主要考查绝对值不等式的解法,函数的恒成立问题,函数的单调性的应用,体现了数形结合以及转化的数学思想,属于中档题.