精英家教网 > 高中数学 > 题目详情
13.已知集合M={-2,-1,0},N={x|$\frac{1}{2}$≤2x≤4,x∈R},则M∩N(  )
A.{-2,-1,0,1,2}B.{-1,0,1,2}C.{-1,0,1}D.{0,1}

分析 先分别求出集合M,N,由此能求出M∩N.

解答 解:∵集合M={-2,-1,1,0},
N={x|$\frac{1}{2}$≤2x≤4,x∈R}={x|-1≤x≤2},
∴M∩N={-1,0,1}.
故选:C.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+4xy,f(1)=1,则f(-2)=(  )
A.-2B.2C.6D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设实数m,n满足$\frac{6}{m}+\frac{4}{n}=\sqrt{2mn}$,则mn的最小值为4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设$lnx=\frac{{{{ln}^2}sinα}}{lnb},lny=\frac{{{{ln}^2}cosα}}{lnb},lnz=\frac{{{{ln}^2}sinαcosα}}{lnb}$,若$α∈({\frac{π}{4},\frac{π}{2}}),b∈({0,1})$,则x,y,z的大小关系为(  )
A.x>y>zB.y>x>zC.z>x>yD.x>z>y

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在$(2{x}^{2}-\frac{1}{\sqrt{x}})^{6}$的展开式中,含x7的项的系数是(  )
A.60B.160C.180D.240

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若命题p是真命题,命题q是假命题,则下列命题一定是真命题的是(  )
A.p∧qB.p∨qC.(¬p)∧qD.(¬p)∨q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.直线x+ay+6=0与直线(a-2)x+3y+2a=0平行,则a的值为(  )
A.3 或-1B.3C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax+$\frac{b}{x}$+c(a,b,c是常数)是奇函数,且满足f(1)=$\frac{5}{2}$,f(2)=$\frac{17}{4}$
(1)求a,b,c的值;
(2)用定义证明f(x)在区间(0,$\frac{1}{2}$)上的单调性;
(3)试求函数f(x)在区间(0,$\frac{1}{4}$]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设直线l与抛物线x2=4y相交于A,B两点,与圆x2+(y-5)2=r2(r>0)相切于点M,且M为线段AB中点,若这样的直线l恰有4条,则r的取值范围是(  )
A.(1,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

同步练习册答案