精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=ex+m-x3,g(x)=ln(x+1)+2.
(1)若曲线y=f(x)在点(0,f(0))处的切线斜率为1,求实数m的值;
(2)若h(x)=g(x-1)-ax-2在(0,+∞)有两个零点,求a的取值范围;
(3)当m≥1时,证明:f(x)>g(x)-x3

分析 (1)求出f(x)的导数,求得切线的斜率,解方程可得m;
(2)求出函数h(x)的表达式,将函数有两个零点转化为方程有两个根,构造函数转化为两个函数的交点个数问题进行求解即可.
(3)f(x)>g(x)-x3即为ex+m>ln(x+1)+2.由函数y=ex-x-1,求得最小值,可得ex≥x+1,则ex+m>x+m+1,再由h(x)=x+m+1-ln(x+1)-2=x+m-ln(x+1)-1,求出导数,求得最小值,由条件即可得证.

解答 (1)解:因为f(x)=ex+m-x3,所以f′(x)=ex+m-3x2
因为曲线y=f(x)在点(0,f(0))处的切线斜率为1,
所以f′(0)=em=1,
解得m=0.
(2)若h(x)=g(x-1)-ax-2=lnx+2-ax-2=lnx-ax在(0,+∞)有两个零点,
等价为lnx-ax=0在(0,+∞)有两个不同的根,
即a=$\frac{lnx}{x}$,设g(x)=$\frac{lnx}{x}$,则函数的导数g′(x)=$\frac{1-lnx}{{x}^{2}}$,由g′(x)>0得0<x<e,由g′(x)<0,得x>e,
即当x=e时,函数g(x)取得极大值g(e)=$\frac{1}{e}$,
又g(x)有且只有一个零点1,当x→0时,g(x)→-∞,
当x→+∞时,g(x)→0,
则要使a=$\frac{lnx}{x}$在[0,+∞)上有两个不同的根,则0<a<$\frac{1}{e}$.
(3)证明:f(x)>g(x)-x3即为ex+m>ln(x+1)+2.
由y=ex-x-1的导数为y′=ex-1,
当x>0时,y′>0,函数递增;当x<0时,y′<0,函数递减.
即有x=0处取得极小值,也为最小值0.
即有ex≥x+1,则ex+m≥x+m+1,
由h(x)=x+m+1-ln(x+1)-2=x+m-ln(x+1)-1,
h′(x)=1-$\frac{1}{x+1}$,当x>0时,h′(x)>0,h(x)递增;
-1<x<0时,h′(x)<0,h(x)递减.
即有x=0处取得最小值,且为m-1,
当m≥1时,即有h(x)≥m-1≥0,
即x+m+1≥ln(x+1)+2,
则有f(x)>g(x)-x3成立.

点评 本题考查导数的运用:求切线的斜率和单调区间、极值和最值,考查不等式的证明,注意运用构造法,以及不等式的传递性,考查学生的运算能力,综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设抛物线y2=2px(p>0)的焦点为F,准线为l,过抛物线上一点A作l的垂线,垂足为B,设C($\frac{7}{2}$p,0),AF与BC相交于点E,若|CF|=2|AF|,且△ACE的面积为3$\sqrt{2}$,则p的值为(  )
A.$\sqrt{6}$B.2C.3D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示,一个空间几何体的正视图和侧视图都是边长为4的等边三角形,俯视图是一个圆,那么其体积为(  )
A.$\frac{{4\sqrt{3}}}{3}π$B.$\frac{{8\sqrt{3}}}{3}π$C.$\frac{{\sqrt{3}}}{2}π$D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=2xsin$\frac{x}{2}$cos$\frac{x}{2}$,有下列四个结论;
①函数y=f(x)由无数多个极值点;
②?x∈R,都有f(-x)=-f(x)成立;
③?M>0,至少存在一个实数x0,使得f(x0)>M;
④存在常数T≠0,对于?x∈R,恒有f(x+T)=f(x)成立,
其中正确结论的序号是①③(将所有正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{2}$x2-(a+2)x+2alnx(a>0),
(1)若曲线y=f(x)在点(1,f(1))处的切线为y=2x+b,求a+2b的值;
(2)讨论函数f(x)的单调性;
(3)设函数g(x)=-(a+2)x,若至少存在一个x0∈[e,4],使得f(x0)>g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\frac{{x}^{3}+sinx}{1+{x}^{2}}$+3的最大值、最小值分别为M、n,则M+n=(  )
A.0B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列函数的定义域
(1)y=$\sqrt{x+2}$+$\frac{1}{x+1}$+(x-1)0
(2)y=$\frac{1}{{1-\sqrt{x-3}}}$
(3)若y=f(x)的定义域为[1,3],求y=f(1-3x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.复数z=a+i(a∈R,i是虚数单位),若$\frac{z}{1-i}$为纯虚数,则|z|的值为(  )
A.1B.2C.$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.关于函数f(x)=cos(2x-$\frac{π}{3}$)+cos(2x+$\frac{π}{6}$),则下列命题:
①y=f(x)的最大值为$\sqrt{2}$;
②y=f(x)最小正周期是π;
③y=f(x)在区间$[\frac{π}{24},\frac{13π}{24}]$上是减函数;
④将函数y=$\sqrt{2}$cos2x的图象向右平移$\frac{π}{24}$个单位后,将与已知函数的图象重合.
其中正确命题的序号是①②③④.

查看答案和解析>>

同步练习册答案