【题目】已知椭圆:
, 左右焦点分别为F1 , F2 , 过F1的直线l交椭圆于A,B两点,若|BF2|+|AF2|的最大值为5,则b的值是
【答案】![]()
【解析】由0<b<2可知,焦点在x轴上,
∵过F1的直线l交椭圆于A,B两点,∴|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8
∴|BF2|+|AF2|=8﹣|AB|.
当AB垂直x轴时|AB|最小,|BF2|+|AF2|值最大,
此时|AB|=b2 , ∴5=8﹣b2 ,
解得b=
.
故答案为
.
由题意可知椭圆是焦点在x轴上的椭圆,利用椭圆定义得到|BF2|+|AF2|=8﹣|AB|,再由过椭圆焦点的弦中通径的长最短,可知当AB垂直于x轴时|AB|最小,把|AB|的最小值b2代入|BF2|+|AF2|=8﹣|AB|,由|BF2|+|AF2|的最大值等于5列式求b的值。
科目:高中数学 来源: 题型:
【题目】如图所示,F为双曲线C:
﹣
=1的左焦点,双曲线C上的点Pi与P7﹣i(i=1,2,3)关于y轴对称,则|P1F|+|P2F|+|P3F|﹣|P4F|﹣|P5F|﹣|P6F|的值是( )
![]()
A. 9 B. 16 C. 18 D. 27
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A、B为抛物线C:
上两点,A与B的中点的横坐标为2,直线AB的斜率为1.
(Ⅰ)求抛物线C的方程;
(Ⅱ)直线
交x轴于点M,交抛物线C:
于点P,M关于点P的对称点为N,连结ON并延长交C于点H.除H以外,直线MH与C是否有其他公共点?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正四棱柱ABCD-A1B1C1D1中,底面边长为2
,侧棱长为4,E,F分别是棱AB,BC的中点,EF∩BD=G.求证:平面B1EF⊥平面BDD1B1.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中正确的是_____________ .(填序号)
①棱柱的面中,至少有两个面互相平行;
②以直角三角形的一边为轴旋转所得的旋转体是圆锥;
③用一个平面去截圆锥,得到一个圆锥和一个圆台;
④有两个面平行,其余各面都是平行四边形的几何体叫棱柱;
⑤圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A、B、C、D是函数y=sin(ωx+φ)(ω>0,0<φ<
)一个周期内的图象上的四个点,如图所示,A(﹣
, 0),B为y轴的点,C为图象上的最低点,E为该函数图象的一个对称中心,B与D关于点E对称,
在x轴方向上的投影为
.
(1)求函数f(x)的解析式及单调递减区间;
(2)将函数f(x)的图象向左平移
得到函数g(x)的图象,已知g(α)=
, α∈(﹣
, 0),求g(α+
)的值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P﹣ABC中,PA=PB=AB=BC=2,∠CBA=∠PBC=60°,Q为线段BC的中点.
(1)求证:PA⊥BC;
(2)求点Q到平面PAC的距离.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4―4:坐标系与参数方程]
在直角坐标系xOy中,曲线C的参数方程为
(θ为参数),直线l的参数方程为
.
(1)若a=1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为
,求a.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com