精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)的定义域为R,f(-2)=2021,对任意x∈(-∞,+∞),都有f'(x)<2x成立,则不等式f(x)>x2+2017的解集为(  )
A.(-2,+∞)B.(-2,2)C.(-∞,-2)D.(-∞,+∞)

分析 构造函数g(x)=f(x)-x2-2017,利用对任意x∈R,都有f′(x)<2x成立,即可得出函数g(x)在R上单调性,进而即可解出不等式.

解答 解:令g(x)=f(x)-x2-2017,则g′(x)=f′(x)-2x<0,
∴函数g(x)在R上单调递减,
而f(-2)=2021,
∴g(-2)=f(-2)-(-2)2-2017=0,
∴不等式f(x)>x2+2017,可化为g(x)>g(-2),
∴x<-2,
即不等式f(x)>x2+2017的解集为(-∞,-2),
故选:C.

点评 本题主要考查了导数的应用,恰当构造函数和熟练掌握利用导数研究函数的单调性是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P-ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于G,H两点.
(1)求证:AB∥FG;
(2)若PA⊥平面ABCDE,且PA=AE,求平面PCD与平面ABF所成角(锐角)的余弦值,并求线段PH的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.曲线x2+(y-1)2=1(x≤0)上的点到直线x-y-1=0的距离最大值为a,最小值为b,则a-b的值是(  )
A.$\sqrt{2}$B.2C.$\frac{\sqrt{2}}{2}$+1D.$\sqrt{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.甲乙和其他4名同学合影留念,站成两排三列,且甲乙两人不在同一排也不在同一列,则这6名同学的站队方法有(  )
A.144种B.180种C.288种D.360种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修.每台机器出现故障需要维修的概率为$\frac{1}{3}$.
(1)问该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%?
(2)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资.每台机器不出现故障或出现故障能及时维修,就使该厂产生5万元的利润,否则将不产生利润.若该厂现有2名工人.求该厂每月获利的均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设Sn为等差数列{an}的前n项和,若$\frac{{S}_{1}}{{S}_{4}}$=$\frac{1}{10}$,则$\frac{{S}_{3}}{{S}_{5}}$=(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{3}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知随机变量ξ的分布列如下:
ξ 012
 P a2 $\frac{1}{2}$-$\frac{a}{2}$
则E(ξ)的最小值为$\frac{3}{4}$,此时b=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF${\;}_{=}^{∥}$2CE,G是线段BF上一点,AB=AF=BC
(Ⅰ)若EG∥平面ABC,求$\frac{BG}{BF}$的值;
(Ⅱ)是否在线段BF上存在点G满足BF⊥平面AEG?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知定义在R上的奇函数f(x)满足f(x+1)=f(x-1),数列{an}的前n项和为Sn,且Sn=2an+2,则f(a2016)的值为(  )
A.0B.0或1C.-1或0D.1

查看答案和解析>>

同步练习册答案