精英家教网 > 高中数学 > 题目详情
13.如图,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF${\;}_{=}^{∥}$2CE,G是线段BF上一点,AB=AF=BC
(Ⅰ)若EG∥平面ABC,求$\frac{BG}{BF}$的值;
(Ⅱ)是否在线段BF上存在点G满足BF⊥平面AEG?请说明理由.

分析 (Ⅰ)由线面平行的性质定理可得过EG的平面与平面ABC交于CD,D在AB上,连接GD,CD,可得EG∥CD,根据线面平行的判定定理和性质定理,证明CE∥GD,可得四边形GDCE是平行四边形,进而得到G为BF的中点;
(Ⅱ)根据面面垂直的性质定理以及线面垂直的判定定理和性质定理,建立空间直角坐标系,求出F,B,C,E的坐标,运用向量的数量积的坐标表示,计算$\overrightarrow{BF}$•$\overrightarrow{AE}$,即可得到结论.

解答 解:(Ⅰ)EG∥平面ABC,
过EG的平面与平面ABC交于CD,D在AB上,
连接GD,CD,
由线面平行的性质定理可得EG∥CD,
又因为AF∥CE,AF=2CE,
CE?平面ABF,AF?平面ABF,
CE∥平面ABF,CE?平面CEGD,
可得CE∥GD,
则四边形GDCE是平行四边形,
即有AF∥GD,AF=2GD,
即G为BF的中点,
则$\frac{BG}{BF}$=$\frac{1}{2}$;
(Ⅱ)因为平面ABC⊥平面ACEF,平面ABC∩平面ACEF=AC,
且AF⊥AC,所以AF⊥平面ABC,
所以AF⊥AB,AF⊥BC,
因为BC⊥AB,所以BC⊥平面ABF.
如图,以A为原点,建立空间直角坐标系A-xyz.
设AB=AF=BC=2,
则F(0,0,2),B(2,0,0),C(2,2,0),E(2,2,1),
因为$\overrightarrow{BF}$•$\overrightarrow{AE}$=(-2,0,2)•(2,2,1)=-2×2+2=0×2+2×1=-2≠0,
所以BF与AE不垂直,
所以不存在点G满足BF⊥平面AEG.

点评 本题主要考查线面平行的判定和性质定理的运用,以及中位线定理的运用,线面垂直的存在性问题,建立空间直角坐标系,利用向量法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(2,-1),则它的离心率为$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)的定义域为R,f(-2)=2021,对任意x∈(-∞,+∞),都有f'(x)<2x成立,则不等式f(x)>x2+2017的解集为(  )
A.(-2,+∞)B.(-2,2)C.(-∞,-2)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,棱柱ABCD-A1B1C1D1中,底面ABCD是平行四边形,侧棱AA1⊥底面ABCD,AB=1,AC=$\sqrt{3}$,BC=BB1=2.
(Ⅰ)求证:AC⊥平面ABB1A1
(Ⅱ)求二面角A-C1D-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(百分比)为“衰分比”.如:甲、乙、丙、丁衰分得100,60,36,21.6个单位,递减的比例为40%,今共有粮m(m>0)石,按甲、乙、丙、丁的顺序进行“衰分”,已知丙衰分得80石,乙、丁衰分所得的和为164石,则“衰分比”与m的值分别为(  )
A.20%  369B.80%  369C.40%  360D.60%  365

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若集合A={x|1≤2x≤8},B={x|(x-2)(x+1)>0},则A∩B=(  )
A.(2,3]B.[2,3]C.(-∞,0)∪(0,2]D.(-∞,-1)∪(0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在平行四边形ABCD中,AD=1,∠BAD=30°,E为CD的中点.若$\overrightarrow{AC}•\overrightarrow{BE}=1$,则AB的长为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知{an}是等差数列,其中a1=13,a4=7.
(1)求{an}的通项公式;
(2)求{an}前n项和为Sn,并求出Sn的最大值及对应项;
(3)求数列{|an|}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.将函数y=sin2x的图象向右平移$\frac{π}{12}$个单位长度后,再将函数图象上各点的横坐标伸长到原来的2倍(纵坐标不变)后得到的图象的解析式为y=sin(x-$\frac{π}{6}$).

查看答案和解析>>

同步练习册答案