分析 (1)求出{an}是等差数列的公差,然后求解通项公式.
(2)化简数列的前n项和,通过二次函数的最值求解即可.
(3)利用绝对值求解数列的和即可.
解答 解:(1){an}是等差数列,其中a1=13,a4=7.
可得3d=a4-a1=7-13=-6,∴d=-2.
∴an=13-2(n-1)=15-2n.
(2)Sn=13n+$\frac{n(n-1)}{2}$•(-2)=-n2+14n=-(n-7)2+49.
∴当n=7时,Sn取最大值S7=49.
(3)当n≤7时,an>0,Tn=13n+$\frac{n(n-1)}{2}×(-2)$=12n+n2,
T7=13+11+9+7+5+3+1=53.
当n>7,an<0,
Tn=|a1|+|a3|+|a5|+…+|an|=2T7-(a1+a3+a5+…+an)=108-12n-n2.
Tn=$\left\{\begin{array}{l}{12n+{n}^{2},n≤7,n∈{N}^{•}}\\{108-12n-{n}^{2},n>7,n∈{N}^{•}}\end{array}\right.$
点评 本题考查数列的求和,等差数列通项公式的应用,考查数列与函数的综合应用,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | 144种 | B. | 180种 | C. | 288种 | D. | 360种 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年龄(岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
| 频数 | 5 | 10 | 15 | 10 | 5 | 5 |
| 赞成人数 | 4 | 6 | 9 | 6 | 3 | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=f(x)在(-∞,-0.7)上单调递增 | B. | y=f(x)在(-2,2)上单调递增 | ||
| C. | 在x=1时,函数y=f(x)取得极值 | D. | y=f(x)在x=0处切线的斜率小于零. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 0或1 | C. | -1或0 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com