精英家教网 > 高中数学 > 题目详情
10.已知{an}是等差数列,其中a1=13,a4=7.
(1)求{an}的通项公式;
(2)求{an}前n项和为Sn,并求出Sn的最大值及对应项;
(3)求数列{|an|}的前n项和为Tn

分析 (1)求出{an}是等差数列的公差,然后求解通项公式.
(2)化简数列的前n项和,通过二次函数的最值求解即可.
(3)利用绝对值求解数列的和即可.

解答 解:(1){an}是等差数列,其中a1=13,a4=7.
可得3d=a4-a1=7-13=-6,∴d=-2.
∴an=13-2(n-1)=15-2n.
(2)Sn=13n+$\frac{n(n-1)}{2}$•(-2)=-n2+14n=-(n-7)2+49.
∴当n=7时,Sn取最大值S7=49.
(3)当n≤7时,an>0,Tn=13n+$\frac{n(n-1)}{2}×(-2)$=12n+n2
T7=13+11+9+7+5+3+1=53.
当n>7,an<0,
Tn=|a1|+|a3|+|a5|+…+|an|=2T7-(a1+a3+a5+…+an)=108-12n-n2
Tn=$\left\{\begin{array}{l}{12n+{n}^{2},n≤7,n∈{N}^{•}}\\{108-12n-{n}^{2},n>7,n∈{N}^{•}}\end{array}\right.$

点评 本题考查数列的求和,等差数列通项公式的应用,考查数列与函数的综合应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.甲乙和其他4名同学合影留念,站成两排三列,且甲乙两人不在同一排也不在同一列,则这6名同学的站队方法有(  )
A.144种B.180种C.288种D.360种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF${\;}_{=}^{∥}$2CE,G是线段BF上一点,AB=AF=BC
(Ⅰ)若EG∥平面ABC,求$\frac{BG}{BF}$的值;
(Ⅱ)是否在线段BF上存在点G满足BF⊥平面AEG?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成如表:
年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]
频数510151055
赞成人数469634
(Ⅰ)完成被调查人员的频率分布直方图;
(Ⅱ)若从年龄在[55,65),的被调查者中各随机选取2人进行追踪调查,记选中的2人中赞成“车辆限行”的人数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$(a+2)x2+(2a+1)x+1没有极值,则整数a的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)的导函数f′(x)的图象如图所示,那么下面说法正确的是(  )
A.y=f(x)在(-∞,-0.7)上单调递增B.y=f(x)在(-2,2)上单调递增
C.在x=1时,函数y=f(x)取得极值D.y=f(x)在x=0处切线的斜率小于零.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知定义在R上的奇函数f(x)满足f(x+1)=f(x-1),数列{an}的前n项和为Sn,且Sn=2an+2,则f(a2016)的值为(  )
A.0B.0或1C.-1或0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若曲线y=$\frac{1}{2e}$x2与曲线y=alnx在它们的公共点P(s,t)处具有公共切线,则实数a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算下列各式的值:
(1)${({2\frac{7}{9}})^{\frac{1}{2}}}+{({lg5})^0}+{({\frac{27}{64}})^{\frac{1}{3}}}$
(2)$\frac{lg8+lg125-lg2-lg5}{{lg\sqrt{10}•lg0.1}}$.

查看答案和解析>>

同步练习册答案