精英家教网 > 高中数学 > 题目详情
19.在四棱锥P-ABCD中,底面ABCD为菱形,∠DAB=60°,PC⊥平面ABCD,且AB=2,PC=$\sqrt{6}$,F是PA的中点.
(Ⅰ)求证:CF⊥平面PDB;
(Ⅱ)求平面ADP与平面BCP所成锐二面角的余弦值.

分析 (Ⅰ)连接AC,交BD于点O,连接PO,则PO与CF相交,设交点为E,则AC⊥BD,PC⊥BD,BD⊥CF,PO⊥CF,由此能证明CF⊥平面PDB.
(Ⅱ)过点P作PG,使得 PG=BC,则GP∥AD∥BC,从而二面角AD-P-BC,即二面角C-PG-D,在平行四边形ADGP中,过点P作AD的垂线,垂足为H,则∠HPC即所求二面角的平面角,由此能求出平面ADP与平面BCP所成锐二面角的余弦值.

解答 证明:(Ⅰ)连接AC,交BD于点O,连接PO,由于PO,CF?平面PAC,
所以PO与CF相交,设交点为E,
∵底面ABCD为菱形,∴AC⊥BD,又∵PC⊥平面ABCD,∴PC⊥BD,
∴BD⊥平面PAC,又∵CF?平面PAC,∴BD⊥CF,
在△PAC中,∵∠DAB=60°,AB=2,∴AC=2$\sqrt{3}$,OC=$\sqrt{3}$,
CF=PF=$\frac{3\sqrt{2}}{2}$,PO=3,
∴cos∠FCP=$\frac{(\frac{3\sqrt{2}}{2})^{2}+(\sqrt{6})^{2}-(\frac{3\sqrt{2}}{2})^{2}}{2×\frac{3\sqrt{2}}{2}×\sqrt{6}}$=$\frac{\sqrt{3}}{3}$,sin∠OPC=$\frac{\sqrt{3}}{3}$,
∴cos∠FCP=sin∠OPC,又∵两个角都是锐角,
∴∠FCP+∠OPC=90°,则∠PEC=90°,即PO⊥CF,
∵PO∩BD=E,PO、BD?平面PAC,∴CF⊥平面PDB,
解:(Ⅱ)过点P作PG,使得 PG=BC,则底面ABCD为菱形,∴GP∥AD∥BC,∴二面角AD-P-BC,即二面角C-PG-D
在平行四边形ADGP中,过点P作AD的垂线,垂足为H,则PH⊥PG
又∵PC⊥平面ABCD∴PC⊥BC∴PC⊥PG
∴∠HPC即所求二面角的平面角
∵AD⊥PH,AD⊥PC,∴AD⊥平面HPC,∴AD⊥CH,
又∵∠HDC=60°,DC=2,∴$HC=CD•sin{60°}=2•\frac{{\sqrt{3}}}{2}=\sqrt{3}$,
在△HPC中,∠PCH=90°,$PC=\sqrt{6}$,$HC=\sqrt{3}$,∴PH=3,
∴$cos∠HPC=\frac{PC}{PH}=\frac{{\sqrt{6}}}{3}$,即所求二面角的平面角的余弦值为$\frac{{\sqrt{6}}}{3}$.

点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.求经过点(-2,-3),并在x轴上的截距为2的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知命题p:“?x∈R,x≥2,那么命题¬p为?x∈R,x<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点P的直角坐标为(1,2),点M的极坐标为$(3,\frac{π}{2})$,若直线l过点P,且倾斜角为$\frac{π}{6}$,圆C以M为圆心,3为半径.
(Ⅰ)求直线l的参数方程和圆C的极坐标方程;
(Ⅱ)设直线l与圆C相交于A,B两点,求|PA|•|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(Ⅰ)求不等式|2x-4|+|x+1|≥5解集;
(Ⅱ)已知a,b为正数,若直线(a-1)x+2y+6=0与直线2x+by-5=0互相垂直,求证:$\frac{1}{{a}^{2}}+\frac{1}{{b}^{2}}$≥8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,在二面角A-CD-B中,BC⊥CD,BC=CD=2,点A在直线AD上运动,满足AD⊥CD,AB=3.现将平面ADC沿着CD进行翻折,在翻折的过程中,线段AD长的取值范围是$[\sqrt{5}-2,\sqrt{5}+2]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x2,则函数y=f(x)-log5|x-1|的零点个数是(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a,b,c满足c<b<a,且ac<0,下列选项中不一定成立的是(  )
A.ab>acB.c(b-a)>0C.ac(a-c)<0D.cb2>ab2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A={x|$\frac{1+x}{1-x}>0$},B={x|(x+a)(x-a-2)<0}.
(1)当a=0时,求A∪B;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案