精英家教网 > 高中数学 > 题目详情
已知定义域为R的函数f(x)=
2x-b
2x+a
是奇函数.
(1)求a,b的值;
(2)利用定义判断函数y=f(x)的单调性;
(3)若对任意t∈[0,1],不等式f(2t2+kt)+f(k-t2)>0恒成立,求实数k的取值范围.
(1)∵f(x)为R上的奇函数,
∴f(0)=0,即
1-b
1+a
=0,可得b=1
又∵f(-1)=-f(1),即
2-1-1
2-1+a
=-
2-1
2+a
,解之得a=1,
经检验当a=1且b=1时,f(x)=
2x-1
2x+1
满足f(-x)=-f(x)是奇函数,
(2)由(1)得f(x)=
2x-1
2x+1
,任取实数x1、x2,且x1<x2
则f(x1)-f(x2)=
2x1-1
2x1+1
-
2x2-1
2x2+1
=
(2x1-1)(2x2+1)-(2x2-1)(2x1+1)
(2x1+1)(2x2+1)

=
2(2x1-2x2)
(2x1+1)(2x2+1)

∵x1<x2,可得2x1-2x2<0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
函数f(x)在(-∞,+∞)上为增函数;
(3)根据(1)(2)知,函数f(x)是奇函数且在(-∞,+∞)上为增函数.
∴不等式f(2t2+kt)+f(k-t2)>0对任意t∈[0,1]恒成立,
即f(2t2+kt)>-f(k-t2)=f(t2-k),
∴2t2+kt>t2-k对任意t∈[0,1]都成立.
即t2+kt+k>0,变量分离得k>-
t2
t+1
对任意t∈[0,1]都成立,
y=-
t2
t+1
,则y′=
(-t2)′(t+1)-(-t2)(t+1)′
(t+1)2

=
-2t(t+1)+t2
(t+1)2
=
-t2-2t
(t+1)2
<0,
y=-
t2
t+1
在[0,1]上递减,则函数的最大值是0,
综上得,k>0,
故实数k的取值范围是:k>0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题12分)对于函数为奇函数(Ⅰ)求的值;(Ⅱ)用函数单调性定义及指数函数性质证明: 上是增函数。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)是偶函数,f(x)在(-∞,0)上是增函数,且f(2a2-3a+2)<f(a2-5a+9),现知适合条件的a的集合是不等式2a2+(m-4)a+n-m+3>0的解集,求m和n的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=log2(
1+x
1-ax
)
(a∈R),若f(-
1
3
)=-1

(1)求f(x)解析式并判断其奇偶性;
(2)当x∈[-1,0)时,求f(3x)的值域;
(3)g(x)=log
2
1+x
k
,若x∈[
1
2
2
3
]
时,f(x)≤g(x)有解,求实数k取值集合.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)是定义在R上的奇函数,当x<0时f(x)=x
2
3
,则f(8)=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

偶函数f(x)在[0,+∞)上为减函数,不等式f(ax-1)>f(2+x2)恒成立,则a的取值范围是(  )
A.(-2,2
3
)
B.(-2
3
,2)
C.(-2
3
,2
3
)
D.(-2,2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(x)为[-1,1]上的奇函数,则f(-1)+f(0)+f(1)的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(A题)定义域为[-1,1]的奇函数y=f(x),若f(
1
2
)=-2,则f(-
1
2
)的值为(  )
A.
1
2
B.2C.-
1
2
D.-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)是定义在实数集上的奇函数,且当x>0时,f(x)=2x
(1)当x<0时,求f(x)的解析式;
(2)画出函数f(x)的图象;
(3)写出函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案