精英家教网 > 高中数学 > 题目详情
若数列{an}对任意的正整数n和常数λ(λ∈N*),等式an+λ2=an×an+2λ都成立,则称数列{an}为“λ阶梯等比数列”,
an+λ
an
的值称为“阶梯比”,若数列{an}是3阶梯等比数列且a1=1,a4=2,则a13=
 
考点:数列递推式
专题:点列、递归数列与数学归纳法
分析:由数列{an}是3阶梯等比数列,且an+λ2=an×an+2λ,在递推式中依次取n=1,4,7即可求得a13的值.
解答: 解:由数列{an}是3阶梯等比数列,且an+λ2=an×an+2λ
a42=a1×a7
∵a1=1,a4=2,
a7=
a42
a1
=
22
1
=4

a72=a4×a10a10=
a72
a4
=
42
2
=8

a102=a7×a13a13=
a102
a7
=
82
4
=16

故答案为:16.
点评:本题是新定义题,考查了数列递推式,解答的关键在于对题意的理解,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
-x
2+lnx
+ax.
(Ⅰ)若函数f(x)在(
1
e
,+∞)上是增函数,求实数a的最小值;
(Ⅱ)若?x1,x2∈[1,e2],使f(x1)≥f′(x2)-a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某程序框图如图所示,则输出的S的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=2an+3n,则下列结论错误的是(  )
A、{
an
3n
-1
}成等比数列
B、{an-3n}成等比数列
C、{an+2n}成等比数列
D、{an-2n}成等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x)=f(
1
x
)且当x∈[
1
π
,1]时,f(x)=lnx,若当x∈[
1
π
,π
]时,函数g(x)=f(x)-ax与x轴有交点,则实数a的取值范围是(  )
A、[-
lnπ
π
,0]
B、[-πlnπ,0]
C、[-
1
n
lnπ
π
]
D、[-
n
2
,-
1
π
]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是某市今年1月份前30天空气质量指数(AQI)的趋势图.

(1)根据该图数据在答题卷中完成频率分布表,并在图4中补全这些数据的频率分布直方图;
分组频数 频率 
[20,40)  
[40,60)  
[60,80)  
[80,100)  
[100,120)  
[120,140)  
[140,160)  
[160,180)  
[180.200]  
 合计 30 1
(2)当空气质量指数(AQI)小于100时,表示空气质量优良.某人随机选择当月(按30天计)某一天到达该市,根据以上信息,能否认为此人到达当天空气质量优良的可能性超过60%?

(图中纵坐标1/300即
1
300
,以此类推)

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a,b∈R)满足条件:①当x∈R时,f(x)的最大值为0,且f(x-1)=f(3-x)成立;②二次函数f(x)的图象与直线y=-2交于A、B两点,且|AB|=4
(Ⅰ)求f(x)的解析式;
(Ⅱ)求最小的实数n(n<-1),使得存在实数t,只要当x∈[n,-1]时,就有f(x+t)≥2x成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx-
π
6
)-
1
2
(ω>0)和g(x)=
1
2
cos(2x+φ)+1图象的对称轴完全相同,若x∈[0,
π
2
],则f(x)的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设P:f(x)=lnx+2x2+mx+1在(0,+∞)内单调递增,q:m≥-4,则p是q的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案