精英家教网 > 高中数学 > 题目详情
20.解下列方程.
(1)32x+1=3x-1;     
(2)($\frac{3}{4}$)2x+1=($\frac{4}{3}$)3x-4

分析 根据指数幂的运算性质即可求出方程的解.

解答 解:(1)32x+1=3x-1
∴2x+1=x-1,
∴x=-2,
(2)($\frac{3}{4}$)2x+1=($\frac{4}{3}$)3x-4
∴($\frac{3}{4}$)2x+1=($\frac{3}{4}$)-3x+4
∴2x+1=-3x+4,
∴x=$\frac{3}{5}$

点评 本题考查了指数方程的解法,关键是掌握指数幂的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)定义域D={x|x≠0},且对任意的m、n∈D都有f(m•n)=f(m)+f(n).
(1)求f(1)、f(-1)的值;
(2)判断f(x)的奇偶性并证明;
(3)若f(x)在(0,+∞)上是增函数,且f(4)=1,解不等式f(3x+1)+f(2x-6)≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数f(x)=x3-4x的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)的定义域为R+,且有:
①f($\frac{1}{2}$)=1;
②对任意正实数x,y,都有f(x•y)=f(x)+f(y)
③f(x)为减函数.
(1)求:f($\frac{1}{4}$),f($\frac{1}{8}$),f(1),f(2),f(4)的值;
(2)求证:当x∈[1,+∞)时,f(x)≤0
(3)求证:当x,y∈R+时.都有f($\frac{x}{y}$)=f(x)-f(y);
(4)解不等式:f(-x)+f(3-x)≥-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若关于x的方程x2+$\frac{1}{{x}^{2}}$+a(x+$\frac{1}{x}$)+b=0(其中a,b∈R)有实数根,则a2+b2的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设向量$\overrightarrow{a}$,$\overrightarrow{b}$不共线,向量$\overrightarrow{a}$-2$\overrightarrow{b}$与k$\overrightarrow{a}$+3$\overrightarrow{b}$共线,则实数k=$-\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设n∈N*,n>1,根据n次方根的意义,下列各式①($\root{n}{a}$)n=a;②$\root{n}{{a}^{n}}$不一定等于a:③n是奇数时$\root{n}{{a}^{n}}$=a;④n为偶数时,$\root{n}{{a}^{n}}$=|a|,其中正确的有(  )
A.①②③④B.①③④C.①②③D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.关于x的方程ax=log${\;}_{\frac{1}{a}}$x(a>0且a≠1)(  )
A.无解B.必有唯一解
C.当且仅当a>1时有唯一解D.当且仅当0<a<1时有唯一解

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设集合A={x|x2-4x=0},集合B={x|x2-2(a+1)x+a2-1=0}.
(1)若A∪B=B,求实数a的值;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案