精英家教网 > 高中数学 > 题目详情

【题目】选修4﹣4;坐标系与参数方程 已知曲线C1的参数方程是 (φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2, ).
(1)求点A,B,C,D的直角坐标;
(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.

【答案】
(1)解:点A,B,C,D的极坐标为

点A,B,C,D的直角坐标为


(2)解:设P(x0,y0),则 为参数)

t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ

∵sin2φ∈[0,1]

∴t∈[32,52]


【解析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.
【考点精析】通过灵活运用椭圆的参数方程,掌握椭圆的参数方程可表示为即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,平面PAC⊥平面ABCD,AC=2BC=2CD=4,∠ACB=∠ACD=60°.
(1)证明:CP⊥BD;
(2)若AP=PC=2 ,求二面角A﹣BP﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2x+b)ex , F(x)=bx﹣lnx,b∈R.
(1)若b<0,且存在区间M,使f(x)和F(x)在区间M上具有相同的单调性,求b的取值范围;
(2)若F(x+1)>b对任意x∈(0,+∞)恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双十一期间某电商准备矩形促销市场调查,该电商决定活动,市场调查,该电商决定从2种服装商品,2种家电商品,3种日用商品中,选出3种商品进行促销活动.
(1)试求选出的3种商品中至多有一种是家电商品的概率;
(2)电商对选出的某商品采用促销方案是有奖销售,顾客购买该商品,一共有3次抽奖的机会,若中奖,则每次都活动数额为40元的奖券,假设顾客每次抽奖时中奖的概率都是 ,且每次中奖互不影响,设一位顾客中奖金额为随机变量ξ,求ξ的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了竖一块广告牌,要制造三角形支架,如图,要求∠ACB=60°,BC的长度大于1米,且AC比AB长0.5米,为了稳固广告牌,要求AC越短越好,则AC最短为(
A.(1+ )米
B.2米
C.(1+ )米
D.(2+ )米

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos2x+2 sinxcosx+a,且当x∈[0, ]时,f(x)的最小值为2.
(1)求a的值,并求f(x)的单调递增区间;
(2)先将函数y=f(x)的图象上的点纵坐标不变,横坐标缩小到原来的 ,再将所得图象向右平移 个单位,得到函数y=g(x)的图象,求方程g(x)=4在区间[0, ]上所有根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△AnBnCn的三边长分别为an , bn , cn , n=1,2,3…,若b1>c1 , b1+c1=2a1 , an+1=an , bn+1= ,cn+1= ,则∠An的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二阶矩阵M有特征值λ=8及对应的一个特征向量 =[ ],并且矩阵M对应的变换将点(﹣1,2)变换成(﹣2,4).
(1)求矩阵M;
(2)求矩阵M的另一个特征值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|,若不等式f(x)≤3的解集为{|x|﹣1≤x≤5}. (Ⅰ)求实数a的值:
(Ⅱ)若不等式f(3x)+f(x+3)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案