精英家教网 > 高中数学 > 题目详情
14.如图所示,已知直三棱柱ABC-A′B′C′,点M、N分别为A′B和B′C′的中点,证明:MN∥平面A′ACC′.

分析 设A′B′的中点为E,连接EM,EN,利用三角形的中位线,得出线线平行,用面面平行判定定理即可得到面EMN∥面ACC′A′,即可得到线面平行.

解答 证明:设A′B′的中点为E,连接EM,EN,
∵点M,N分别为A′B和B′C′的中点,
∴NE∥A′C′,ME∥AA′,
又∵A′C′?平面ACC′A′,AA′?平面ACC′A′,
∴NE∥平面ACC′A′,ME∥平面ACC′A′,
∵NE∩ME=E,
∴面EMN∥面ACC′A′,
∵MN?面EMN,
∴MN∥面ACC′A′.

点评 本题考查了面面平行平行的判定与性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知|$\overrightarrow a|=4,|\overrightarrow b|=3,(2\overrightarrow a-3\overrightarrow b)•(2\overrightarrow a+\overrightarrow b)=61$.
(1)求$\overrightarrow a$与$\overrightarrow b$的夹角θ;
(2)若$\vec c=t\vec a+(1-t)\vec b$,且$\vec b•\vec c=0$,求$|{\vec c}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an},满足a3=7,a5+a7=26.
(Ⅰ)求数列{an}的通项an
(Ⅱ)令bn=$\frac{1}{{{a}_{n}}^{2}-1}$(n∈N*),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.有一块铁皮零件,其形状是由边长为30cm的正方形截去一个三角形ABF所得的五边形ABCDE,其中AF=8cm,BF=6cm,如图所示.现在需要用这块材料截取矩形铁皮DMPN,使得矩形相邻两边分别落在CD,DE上,另一顶点P落在边CB或BA边上.设DM=xcm,矩形DMPN的面积为ycm2
(1)试求出矩形铁皮DMPN的面积y关于x的函数解析式,并写出定义域;
(2)试问如何截取(即x取何值时),可使得到的矩形DMPN的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.
(1)求异面直线AD1与BD所成的角
(2)求证:C1O∥面AB1D1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知0≤x≤2,$\sqrt{x(2-x)}$的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)对于一切实数x满足f(2-x)=f(2+x),若方程f(x)=0恰有两个不同的实根,那么这两个根的和是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.经过圆x2+y2-2x+2y=0的圆心且与直线2x-y=0平行的直线方程是(  )
A.2x-y-3=0B.2x-y-1=0C.2x-y+3=0D.x+2y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.正方体ABCD-A′B′C′D′中,<$\overrightarrow{A′B}$,$\overrightarrow{B′D′}$>=(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

同步练习册答案