精英家教网 > 高中数学 > 题目详情
一个动圆与定圆F:(x+2)2+y2=1相内切,且与定直线l:x=3相切,则此动圆的圆心M的轨迹方程是(  )
A、y2=8x
B、y2=4x
C、y2=-4x
D、y2=-8x
考点:轨迹方程
专题:圆锥曲线的定义、性质与方程
分析:先利用圆与圆的位置关系,直线与圆的位置关系找到动点M的几何条件,再根据抛物线的定义确定动点M的轨迹,最后利用抛物线的标准方程写出轨迹方程.
解答: 解:设动圆M的半径为r,依题意:|MF|=r-1,点M到定直线x=2的距离为d=r-1
∴动点M到定点F(-2,0)的距离等于到定直线x=2的距离
∴M的轨迹为以F为焦点,x=2为准线的抛物线
∴此动圆的圆心M的轨迹方程是y2=-8x
故选:D.
点评:本题考查了圆与圆的位置关系,直线与圆的位置关系及其判定,抛物线的定义和标准方程,定义法求动点的轨迹方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z1=-
1
2
+
3
2
i,z2=-
1
2
-
3
2
i,则下列命题中错误的是(  )
A、z12=z2
B、|z1|=|z2|
C、z13-z23=1
D、zl、z2互为共轭复数

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司试销某种“上海世博会”纪念品,每件按30元销售,可获利50%,设每件纪念品的成本为a元.
(1)试求a的值;
(2)公司在试销过程中进行了市场调查,发现销售量y(件)与每件销售x(元)满足关系y=-10x+800.设每天销售利润为W(元),求每天销售利润W(元)与每件销售x(元)之间的函数解析式;当每件售价为多少时,每天获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m3,第二种有56m3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如表所示.
产 品木料(单位m3
第 一 种第 二 种
圆 桌0.180.08
衣 柜0.090.28
每生产一只圆桌可获利6元,生产一个衣柜可获利10元,木器厂在现有木料条件下,圆桌和衣柜各生产多少,才使获得利润最多,利润最多为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四边形ABCD中,AB=CD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.
(1)证明:△CBF≌△CDF;
(2)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=(1-x)(x2+ax+b)的图象关于点(-2,0)对称,x1,x2分别是f(x)的极大值和极小值点,则x1-x2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

圆锥侧面展开图是半径为a的半圆,这个圆锥的高是(  )
A、a
B、
1
2
2
a
C、
3
a
D、
1
2
3
a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
m
-
y2
n
=1的离心率为3,有一个焦点与抛物线y=
1
12
x2的焦点相同,那  么则m=
 
,n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1经过点A(-3,0),B(3,2),直线l2经过点B,且与x轴交于点C,l1⊥l2
(1)求直线l1,l2的方程;
(2)求△ABC外接圆的方程.

查看答案和解析>>

同步练习册答案