精英家教网 > 高中数学 > 题目详情
若函数y=
x+4
2-x
,则此函数定义域为
 
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:根据函数成立的条件,即可求出函数的定义域.
解答: 解:要使函数有意义,则2-x≠0,即x≠2,
则函数的定义域为{x|x≠2},
故答案为:{x|x≠2}
点评:本题主要考查函数定义域的求解,要求熟练掌握常见函数成立的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
1
2
,短轴的两个端点分别为B1、B2,焦点为F1、F2,四边形F1B1F2B2的内切圆半径为
3
2

(1)求椭圆C的方程;
(2)过左焦F1点的直线交椭圆于M、N两点,交直线x=-4于点P,设
PM
MF1
PN
NF2
,试证λ+μ为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1的侧棱AA1⊥平面ABC,△ABC为等边三角形,侧面AA1C1C是正方形,E是A1B的中点,F是棱CC1上的点.
(1)若F是棱CC1中点时,求证:AE⊥平面A1FB;
(2)当VE-ABF=9
3
时,求正方形AA1C1C的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan
α
2
=
1
3
,则cosα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

极坐标系(ρ,θ)(0≤θ<2π)中,点(1,0)关于直线2ρsinθ=1对称的点的极坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱锥S-ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,则球O的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,曲线C的离心率为
2
,且过点(1,
2
),则曲线C的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(π-α)=-
1
2
2
<α<2π,则sin(2π-α)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)满足f(x)+1=
1
f(x+1)
,当x∈[0,1]时,f(x)=x,若在区间(-1,1]上,方程f(x)-mx-2m=0有两个实数解,则实数m的取值范围是(  )
A、0<m≤
1
3
B、0<m<
1
3
C、
1
3
<m≤l
D、
1
3
<m<1

查看答案和解析>>

同步练习册答案