精英家教网 > 高中数学 > 题目详情
1.已知f(x)是定义在(0,+∞)上的增函数,且f(x+y)=f(x)f(y),f(1)=3,求不等式f(x)f(x2-3)≤27的解集($\sqrt{3}$,2].

分析 根据抽象函数的关系,利用赋值法将不等式进行转化,结合函数的单调性进行求解即可.

解答 解:∵f(x+y)=f(x)f(y),f(1)=3,
∴f(1+1)=f(1)f(1)=3×3=9,
即f(2)=9,
则f(3)=f(1+2)f(1)f(2)=3×9=27,
则不等式,f(x)f(x2-3)≤27等价为f(x+x2-3)≤f(3),
∵f(x)是定义在(0,+∞)上的增函数,
∴$\left\{\begin{array}{l}{x>0}\\{{x}^{2}-3>0}\\{{x}^{2}+x-3≤3}\end{array}\right.$,即$\left\{\begin{array}{l}{x>0}\\{x>\sqrt{3}或x<-\sqrt{3}}\\{-3≤x≤2}\end{array}\right.$,
即$\sqrt{3}$<x≤2,
即不等式的解集为:($\sqrt{3}$,2],
故答案为:($\sqrt{3}$,2]

点评 本题主要考查不等式的求解,利用抽象函数的定义关系,利用赋值法将不等式进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如表数据:
单价x(元)88.28.48.68.89
销量y(件)908483807568
(Ⅰ)求回归直线方程$\widehat{y}$=$\widehat{b}$x+$\hat{a}$,其中${\;}_{b}^{∧}$=-20,${\;}_{a}^{∧}$=y-${\;}_{b}^{∧}$$\overline{x}$;
(Ⅱ)预计在今后的销售中,销量与单价仍然服从(Ⅰ)中的关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=kx2-lnx(k∈R).
(1)试讨论函数f(x)的单调性;
(2)证明:$\frac{ln2}{{2}^{4}}+\frac{ln3}{{3}^{4}}+\frac{ln4}{{4}^{4}}$+…+$\frac{lnn}{{n}^{4}}$<$\frac{1}{2e}$(n≥2,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.sin20°•cos10°-cos160°•cos80°的值是(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.假设你家订了一份牛奶,奶哥在早上6:00---7:00之间随机地把牛奶送到你家,而你在早上6:30---7:30之间随机地离家上学,则你在离开家前能收到牛奶的概率是(  )
A.$\frac{1}{8}$B.$\frac{5}{8}$C.$\frac{1}{2}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知甲、乙两组数据如图茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m,n的比值$\frac{m}{n}$=(  )
A.$\frac{3}{8}$B.$\frac{1}{3}$C.$\frac{2}{9}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设复数z满足(1+i)z=|$\sqrt{3}$+i|,其中i为虚数单位,则在复平面内,z对应的点的坐标是(  )
A.($\sqrt{2}$,-$\sqrt{2}$)B.(1,-1)C.(1,-i)D.(2,-2i)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{OA}$=(k,12),$\overrightarrow{OB}$=(4,5),$\overrightarrow{OC}$=(-k,0),且A,B,C三点共线,则k=-24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若平面向量$\overrightarrow a$=(1,x)和$\overrightarrow b$=(-2,1)互相平行,其中x∈R,则x=$-\frac{1}{2}$.

查看答案和解析>>

同步练习册答案