精英家教网 > 高中数学 > 题目详情

在空间中,已知=(2,4,0),=(-1,3,0),则异面直线AB与DC所成角θ的大小为

( )

(A)45° (B)90° (C)120°    (D)135°


 A解析:=(2,4,0),=(-1,3,0),

cos<,>===.

∴<,>=45°.

即AB与DC所成的角为45°.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


如图所示,在边长为5+的正方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,M,N,K为切点,以扇形为圆锥的侧面,以圆O为圆锥底面,围成一个圆锥,求圆锥的表面积与体积.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知l,m,n为两两垂直的三条异面直线,过l作平面α与直线m垂直,则直线n与平面α的关系是(  )

(A)n∥α                (B)n∥α或n⊂α

(C)n⊂α或n与α不平行  (D)n⊂α

查看答案和解析>>

科目:高中数学 来源: 题型:


如图所示,已知PA⊥平面ABC,∠ABC=120°,

PA=AB=BC=6,则||等于(  )

(A)6  (B)6

(C)12   (D)144

查看答案和解析>>

科目:高中数学 来源: 题型:


在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,).若S1,S2,S3分别为三棱锥DABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则( )

(A)S1=S2=S3         (B)S2=S1且S2≠S3

(C)S3=S1且S3≠S2 (D)S3=S2且S3≠S1

查看答案和解析>>

科目:高中数学 来源: 题型:


已知平面α和平面β的法向量分别为a=(1,1,2),b=(x,-2,3),且α⊥β,则x=    

查看答案和解析>>

科目:高中数学 来源: 题型:


如图,在长方体ABCDA1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上.

(1)求异面直线D1E与A1D所成的角;

(2)若二面角D1ECD的大小为45°,求点B到平面D1EC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知椭圆W:+y2=1,直线l与W相交于M,N两点,l与x轴、y轴分别相交于C,D两点,O为坐标原点.

(1)若直线l的方程为x+2y-1=0,求△OCD外接圆的方程.

(2)判断是否存在直线l,使得C,D是线段MN的两个三等分点.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:


设数列{an}的前n项和为Sn,且S-2Sn-anSn+1=0,n=1,2,3,….

(1)求a1,a2,a3

(2)求Sn的表达式.

查看答案和解析>>

同步练习册答案