精英家教网 > 高中数学 > 题目详情
已知(
x
-
2
x2
)n
的展开式中,所有项的二项式系数之和为1024.
(1)求n的值;
(2)求展开式中的常数项;
(3)求展开式中含有理项的个数.
考点:二项式定理的应用
专题:计算题,二项式定理
分析:(1)所有项的二项式系数之和为1024,即为2n=1024,解得即可;
(2)求出通项公式,化简整理,再令x的指数为0,即可得到常数项;
(3)考虑通项公式中,x的指数为偶数的情况,即可得到个数.
解答: 解:(1)所有项的二项式系数之和为1024,
即为2n=1024,解得,n=10;
(2)(
x
-
2
x2
)n
的展开式的通项为Tr+1=
C
r
10
(
x
)10-r(
-2
x2
)r

=
C
r
10
(-2)rx
10-5r
2

10-5r
2
=0,则r=2,
则常数项为:
C
2
10
(-2)2
=180;
(3)有理项即为
10-5r
2
为整数,
则r=0,2,4,6,8,10.
故有6个有理项.
点评:本题考查二项式定理及运用,考查二项式系数的性质和二项式展开式的通项公式的运用,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}中,Sn为其前n项和,a1=4,an=Sn-1+2n+1(n≥2),求a2015

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三次函数f(x)=x3-3x2-9x+a的图象为曲线C,则下列说法中正确的是
 

①f(x)在区间(-1,+∞)上递增;
②若f(x)至少有两个零点,则a的取值范围为[-5,27];
③对任意x1,x2∈[-1,3],都有|f(x1)-f(x2)|≤32;
④曲线C的对称中心为(1,f(1)).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的一个顶点为A(0,-1),焦点在x轴上,若右焦点F到直线x-y+2
2
=0的距离为3;
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线y=kx+1与椭圆相交于不同的两点M、N,且|MN=2|,求直线斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线的顶点在原点,焦点与双曲线
y2
4
-
x2
5
=1的一个焦点重合,则该抛物线的标准方程可能是(  )
A、x2=4y
B、y2=4x
C、x2=-12y
D、y2=-12x

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2
x+1
在x∈[0,3]的最大值为(  )
A、0.5B、1C、1.5D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意非零实数a,b,已知y=f(x),x∈(-∞,0)∪(0,+∞),满足f(ab)=f(a)+f(b)
(1)求f(1)与f(-1)的值;
(2)证明y=f(x)是偶函数;
(3)当x>1时f(x)>0,若f(2)=1,求f(x)在区间[8,32]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

用随机模拟方法,近似计算由曲线y=x2及直线y=1所围成部分的面积S.利用计算机产生N组数,每组数由区间[0,1]上的两个均匀随机数a1=RAND,b=RAND组成,然后对a1进行变换a=2(a1-0.5),由此得到N个点(xi,yi)(i=1,2,…,N).再数出其中满足xi2≤yi≤1(i=1,2,…,N)的点数N1,那么由随机模拟方法可得到的近似值为(  )
A、
2N1
N
B、
N1
N
C、
N1
2N
D、
4N1
N

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|M1M2|=2,点M与两定点M1,M2距离的比值是一个正数m.
(1)试建立适当坐标系,求点M的轨迹方程,并说明其轨迹是什么图形;
(2)求当m=2时,点M的轨迹与以M1M2为直径的圆的公共点所在的直线方程.

查看答案和解析>>

同步练习册答案