精英家教网 > 高中数学 > 题目详情

(2014·海淀模拟)如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1,且E是BC中点.

(1)求证:A1B∥平面AEC1.
(2)求证:B1C⊥平面AEC1.

(1)见解析      (2)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,正方体ABCD-A1B1C1D1中,侧面对角线AB1,BC1上分别有两点E,F,且B1E=C1F.求证:EF∥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,侧棱垂直底面,
(1)求证:
(2)求二面角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2011•浙江)如图,在三棱锥P﹣ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2
(1)证明:AP⊥BC;
(2)在线段AP上是否存在点M,使得二面角A﹣MC﹣β为直二面角?若存在,求出AM的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,平面ABCD,AD//BC,BC=2AD,AC,Q是线段PB的中点.

(1)求证:平面PAC;
(2)求证:AQ//平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长方体中,,点的中点。

(1)求证:直线∥平面
(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•浙江)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.
(Ⅰ)证明:BD⊥平面PAC;
(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;
(Ⅲ)若G满足PC⊥面BGD,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为矩形,平面中点,上一点.
(1)求证:平面
(2)当为何值时,二面角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥底面是菱形,,分别是的中点.

(1)求证:平面⊥平面
(2)上的动点,与平面所成的最大角为,求二面角的正切值.

查看答案和解析>>

同步练习册答案