精英家教网 > 高中数学 > 题目详情
函数y=
lnx
x
在点P(1,0)处的切线方程是(  )
分析:求出曲线的导函数,把x=1代入即可得到切线的斜率,然后根据(1,0)和斜率写出切线的方程即可.
解答:解:∵函数y=
lnx
x

y=
1-lnx
x2

∴切线的斜率k=y′|x=1=
1-ln1
12
=1

根据点斜式,可得切线方程为y=x-1.
故选A.
点评:本题考查了利用导数研究曲线上某点的切线方程,考查了导数的几何意义以及点斜式求直线方程,同时考查了计算能力,解题时要注意正确求导.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x3-3ax2+3b2x.
(I)若a=1,b=0,求曲线y=f(x) 在点(1,f(1))处的切线方程;
(II)当b=1时,若函数f(x) 在[-1,1]上是增函数,求实数a的取值范围;
(Ⅲ)若0<a<b,不等式f(
1+lnx
x-1
>f(
k
x
)
对任意x>1恒成立,求整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
lnxx
在点x=e处的瞬时变化率为
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象与x轴相切于点(-1,0),其导函数y=f′(x)与直线y=2x平行.
(1)求y=f(x)的解析式;
(2)已知
lim
x→+∞
lnx
x
=0
,试讨论方程kf′(x)-lnf(x)=0(k∈R)在区间(-1,+∞)上解得个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•马鞍山模拟)下面命题中正确的是
①②④
①②④
(写出所有正确  命题的编号).①?x∈R,ex≥ex;②若f(x)=x5+x4+x3+2x+1,则f(2)的值用二进制表示为111101;③若a>0,b>0,m>0,则
b
a
b+m
a+m
;④函数y=xlnx与y=
lnx
x
在点(1,0)处的切线相同.

查看答案和解析>>

同步练习册答案