精英家教网 > 高中数学 > 题目详情
已知f(x)=(1+x)(x+
1x3
)n
(n∈N*).
(1)当n=8时,求f(x)展开式中的常数项;
(2)若f(x)展开式中没有常数项,且2<n<6,求n的值,并求此时f(x)展开式中含x2项的系数.
分析:(1)将n的值代入f(x),利用多项式的乘法展开,利用二项展开式的通项公式求出两部分的通项,令x的指数为0求出r的值,代入通项求出展开式的常数项.
(2)按多项式的乘法展开,利用二项展开式的通项公式求出两部分的通项,令x的指数不为0,在n的范围内求出n,将n的值代入通项,令x的指数为2,求出展开式中含x2项的系数.
解答:解:(1)当n=8时,f(x)=(x+
1
x3
)8+x(x+
1
x3
)8

(x+
1
x3
)8
的通项为C8rx8-4r
当r=2时为常数项C82=28
x(x+
1
x3
)8
的通项为C8kx9-4k,无常数项
故f(x)展开式中常数项为28
(2)(1+x)(x+
1
x3
)n
=(x+
1
x3
)n
+x(x+
1
x3
)n

(x+
1
x3
)n
的通项为Cnrxn-4r,无常数项,故n≠4
x(x+
1
x3
)n
的通项为Cnkxn-4k+1,无常数项.故n≠4k-1
由于n∈N*且2<n<6,
故n=5
当n=5时,x2项的系数求解如下:5-4r=2无解;
5-4k+1=2,故k=1,所以x2项的系数为C51=5.
点评:解决二项展开式的特定项的问题,一般利用二项展开式的通项公式求出展开式的通项,再解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(
x
+1)=x+1
,则函数f(x)的解析式为
f(x)=x2-2x+2,(x≥1)
f(x)=x2-2x+2,(x≥1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1+cosx-sinx
1-sinx-cosx
+
1-cosx-sinx
1-sinx+cosx
.  
(1)化简f(x);
(2)如果f(x)•tan
x
2
=
1+tan2
x
2
sinx
,求出x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=|
1|x-1|-1
|
,且关于x的方程f2(x)+bf(x)+c=0有k(k∈N*)个根,则这k个根的和可能是
2、3、4、5、6、7、8
2、3、4、5、6、7、8
.(请写出所有可能值)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(
x-1
)=x+2
x-1
+1

(1)求f(2);
(2)求f(x)的解析式,并求出f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x+1)=
1
x+2
,则f(x)
的解析式为(  )

查看答案和解析>>

同步练习册答案