精英家教网 > 高中数学 > 题目详情

如图,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有两个点Q满足PQ⊥DQ,则a的取值范围是 .

 

 

a>2

【解析】

试题分析:由PQ⊥QD,得:PQ²+QD² = PD² 。

设 BQ=x ,PA=h ,则由勾股定理可计算:

PQ² = 1+h²+x² ,

QD² = 1+(a-x)² ,

PD² = h²+a² ,

代入整理得: x²-ax+1 = 0 ,

因为,方程解得的x值有两个,

所以,a>2。

考点:线面垂直的性质和勾股定理和判别式的综合应用

 

练习册系列答案
相关习题

科目:高中数学 来源:2014-2015学年浙江省嘉兴市高二暑假作业检测数学试卷(解析版) 题型:解答题

已知函数.

(Ⅰ)若方程有两个不相等的实数根,求实数的取值范围;

(Ⅱ)若关于的不等式的解集为,且,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2014-2015学年江西省高二上学期开学考试数学试卷(解析版) 题型:解答题

已知函数(R,且)的部分图象如图所示.

(1) 求的值;

(2) 若方程内有两个不同的解,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2014-2015学年江西省高二上学期开学考试数学试卷(解析版) 题型:选择题

已知x,y的取值如右表:从散点图可以看出y与x线性相关,且回归方程为,则( )

x

0

1

3

4

y

2.2

4.3

4.8

6.7

 

A.3.25 B.2.6 C.2.2 D.0

 

查看答案和解析>>

科目:高中数学 来源:2014-2015学年江苏省高邮市高二学情检测数学试卷(解析版) 题型:解答题

如图所示,P为平行四边形ABCD所在平面外一点,M、N分别为AB、PC的中点,平面PAD∩平面PBC=l.

(1)求证:BC∥l;

(2)MN与平面PAD是否平行?试证明你的结论。

 

查看答案和解析>>

科目:高中数学 来源:2014-2015学年江苏省高邮市高二学情检测数学试卷(解析版) 题型:填空题

如图甲所示为一个平面图形的直观图,则此平面图形可能是图乙中的_______.

 

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨选修4-4第3课时练习卷(解析版) 题型:解答题

已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|-2≤x≤1}.

(1)求a的值,

(2)若≤k恒成立,求k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨选修4-4第3课时练习卷(解析版) 题型:解答题

解不等式:3≤|5-2x|<9.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨选修4-4第2课时练习卷(解析版) 题型:解答题

若a、b、c∈R+,且a+b+c=1,求的最大值.

 

查看答案和解析>>

同步练习册答案