精英家教网 > 高中数学 > 题目详情
选修4-5:不等式选讲
已知f(x)=|x-2|.
(I)解不等式:xf(x)+3>0;
(II)对任意x∈(-3,3),不等式f(x)<m-|x|成立,求m的取值范围.
分析:(I)由f(x)=|x-2|,知xf(x)+3>0,x|x-2|+3>0,由此进行分类讨论,能求出xf(x)+3>0的解集.
(II)由不等式f(x)<m-|x|,知y=|x-2|+|x|=
-(x-2)-x,x≤0
-(x-2)+x,0<x≤2
(x-2)+x,x>2
,作出函数y=|x-2|+|x|的图象,能推导出对任意x∈(-3,3),不等式f(x)<m-|x|成立时,m的取值范围.
解答:解:(I)∵f(x)=|x-2|,xf(x)+3>0,
∴x|x-2|+3>0,
当x≥2时,不等式为x2-2x+3>0,
即(x-1)2+2>0,
此不等式恒成立,故x≥2.
当x<2时,不等式为-x2+2x+3>0,解得-1<x<3,
故-1<x<2.
∴不等式:xf(x)+3>0的解集为{x|x>-1}.
(II)不等式f(x)<m-|x|为|x-2|+|x|<m,
∵y=|x-2|+|x|=
-(x-2)-x,x≤0
-(x-2)+x,0<x≤2
(x-2)+x,x>2

∴y=
-2x+2,x≤0
2,0<x≤2
2x-2,x>2

作出函数y=|x-2|+|x|的图象如图:
当-3<x<3时,2≤|x-2|+|x|<8,
∴对任意x∈(-3,3),不等式f(x)<m-|x|成立时,m的取值范围是{m|m≥8}.
点评:本题考查不等式的解法和满足条件的实数的取值范围的求法,解题时要认真审题,注意分类讨论思想、等价转化思想、数形结合思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
设x,y,z∈(0,+∞),且x+y+z=1,求
1
x
+
4
y
+
9
z
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-5:不等式选讲】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲:
设正有理数x是
2
的一个近似值,令y=1+
1
1+x

(Ⅰ)若x>
2
,求证:y<
2

(Ⅱ)比较y与x哪一个更接近于
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城模拟)(选修4-5:不等式选讲)
已知a,b,c为正数,且a2+a2+c2=14,试求a+2b+3c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)选修4-5:不等式选讲
设函数,f(x)=|x-1|+|x-2|.
(I)求证f(x)≥1;
(II)若f(x)=
a2+2
a2+1
成立,求x的取值范围.

查看答案和解析>>

同步练习册答案