精英家教网 > 高中数学 > 题目详情
已知m>1,直线l:x-my-=0,椭圆C:,F1,F2分别为椭圆C的左、右焦点,
(Ⅰ)当直线l过右焦点F2时,求直线l的方程;
(Ⅱ)设直线l与椭圆C交于A,B两点,△AF1F2,△BF1F2的重心分别为G,H。若原点O在以线段GH为直径的圆内,求实数m的取值范围.
解:(Ⅰ)因为直线l:,经过
所以,得m2=2,
又因为m>1,所以
故直线l的方程为
(Ⅱ)设A(x1,y1),B(x2,y2),
,消去x得
则由,知
且有
由于F1(-c,0),F2(c,0),故O为F1F2的中点,
,可知

设M是CH的中点,则
由题意可知,2|MO|<|CH|,



所以,即m2<4,
又因为m>1且Δ>0,所以1<m<2;
所以m的取值范围是(1,2).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知m>1,直线l:x-my-
m2
2
=0,椭圆C:
x2
m2
+y2=1,F1、F2分别为椭圆C的左、右焦点.
(Ⅰ)当直线l过右焦点F2时,求直线l的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m>1,直线l:x-my-
m
2
2
=0,椭圆C:
x2
m2
+y2
=1,F1,F2分别为椭圆C的左右焦点.设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G,H,若原点O在以线段GH为直径的圆内,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都模拟)已知m>1,直线l:x-my-
m2
2
=0,椭圆C:
x2
m2
+y2=1,F1、F2分别为椭圆C的左、右焦点.
(I)当直线l过右焦点F2时,求直线l的方程;
(II)当直线l与椭圆C相离、相交时,求m的取值范围;
(III)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市高中毕业班摸底测试数学模拟试卷(文科)(高二下期末)(解析版) 题型:解答题

已知m>1,直线l:x-my-=0,椭圆C:+y2=1,F1、F2分别为椭圆C的左、右焦点.
(Ⅰ)当直线l过右焦点F2时,求直线l的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年宁夏银川二中高考数学一模试卷(理科)(解析版) 题型:解答题

已知m>1,直线l:x-my-=0,椭圆C:+y2=1,F1、F2分别为椭圆C的左、右焦点.
(Ⅰ)当直线l过右焦点F2时,求直线l的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.

查看答案和解析>>

同步练习册答案