精英家教网 > 高中数学 > 题目详情
在等比数列{an}中,a2=3,a5=81.
(Ⅰ)求an
(Ⅱ)设bn=log3an,求数列{bn}的前n项和Sn
考点:等比数列的通项公式,等差数列的前n项和
专题:等差数列与等比数列
分析:(Ⅰ)设出等比数列的首项和公比,由已知列式求解首项和公比,则其通项公式可求;
(Ⅱ)把(Ⅰ)中求得的an代入bn=log3an,得到数列{bn}的通项公式,由此得到数列{bn}是以0为首项,以1为公差的等差数列,由等差数列的前n项和公式得答案.
解答: 解:(Ⅰ)设等比数列{an}的公比为q,
由a2=3,a5=81,得
a1q=3
a1q4=81
,解得
a1=1
q=3

an=3n-1
(Ⅱ)∵an=3n-1,bn=log3an
bn=log33n-1=n-1
则数列{bn}的首项为b1=0,
由bn-bn-1=n-1-(n-2)=1(n≥2),
可知数列{bn}是以1为公差的等差数列.
Sn=nb1+
n(n-1)d
2
=
n(n-1)
2
点评:本题考查等比数列的通项公式,考查了等差数列的前n项和公式,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,曲线C:
x=2+
2
2
t
y=1+
2
2
t
(t为参数)的普通方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某空间几何体的正视图是三角形,则该几何体不可能是(  )
A、圆柱B、圆锥
C、四面体D、三棱柱

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=
n2+n
2
,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2an+(-1)nan,求数列{bn}的前2n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,O为坐标原点,椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,离心率为e1;双曲线C2
x2
a2
-
y2
b2
=1的左、右焦点分别为F3,F4,离心率为e2,已知e1e2=
3
2
,且|F2F4|=
3
-1.
(Ⅰ)求C1、C2的方程;
(Ⅱ)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:
(a,b),(a,
.
b
),(a,b),(
.
a
,b),(
.
a
.
b
),(a,b),(a,b),(a,
.
b
),
.
a
,b),(a,
.
b
),(
.
a
.
b
),(a,b),(a,
.
b
),(
.
a
,b)(a,b)
其中a,
.
a
分别表示甲组研发成功和失败,b,
.
b
分别表示乙组研发成功和失败.
(Ⅰ)若某组成功研发一种新产品,则给该组记1分,否则记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;
(Ⅱ)若该企业安排甲、乙两组各自研发一样的产品,试估计恰有一组研发成功的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cosx•sin(x+
π
3
)-
3
cos2x+
3
4
,x∈R.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在闭区间[-
π
4
π
4
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为
2
3
,乙获胜的概率为
1
3
,各局比赛结果相互独立.
(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;
(Ⅱ)记X为比赛决胜出胜负时的总局数,求X的分布列和均值(数学期望).

查看答案和解析>>

科目:高中数学 来源: 题型:

(
x
y
-
y
x
)
8
的展开式中x2y2的系数为
 
.(用数字作答)

查看答案和解析>>

同步练习册答案