精英家教网 > 高中数学 > 题目详情
如图,一简单组合体的一个面ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC平面ABC.

(1)证明:平面ACD平面
(2)若,试求该简单组合体的体积V.
(1)详见解析;(2)该简单几何体的体积

试题分析:(1)欲证平面⊥平面,证明面面垂直,先证线面垂直,即证一个平面过另一个平面的垂线,本题根据面面垂直的判定定理可知在平面内找一条直线与平面垂直,而由已知平面,可得平面,从而可得平面⊥平面;(2)所求简单组合体的体积进行分解:,然后利用体积公式进行求解,关键是几何体的高的求解.
试题解析:(1)证明:∵ DC平面ABC ,平面ABC  
.    .1分
∵AB是圆O的直径 ∴ 
平面ADC.       3分
∵四边形DCBE为平行四边形    ∴DE//BC 
平面ADC        5分
又∵平面ADE  ∴平面ACD平面   ..6分
(2)所求简单组合体的体积: 

,     10分


∴该简单几何体的体积       12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知圆台的上、下底面半径分别是2、6,且侧面面积等于两底面面积之和。
(1)求该圆台的母线长;(2)求该圆台的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图②所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连结AB,设点F是AB的中点.
图①图②
(1)求证:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B-DEG的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,三棱柱ABCA1B1C1中,AA1⊥平面ABC,D、E分别为A1B1、AA1的中点,点F在棱AB上,且AF=AB.

(1)求证:EF∥平面BC1D;
(2)在棱AC上是否存在一个点G,使得平面EFG将三棱柱分割成的两部分体积之比为1∶15,若存在,指出点G的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.则棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值是(   )

A. 2:1
B. 1:1
C. 1:2
D. 1:3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知三点在球心为的球面上,,球心到平面的距离为,则球的表面积为_________

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体的外接球与内切球的表面积的比值为_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

半径为的半圆卷成一个圆锥,圆锥的体积为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案