精英家教网 > 高中数学 > 题目详情
如图①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图②所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连结AB,设点F是AB的中点.
图①图②
(1)求证:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B-DEG的体积.
(1)见解析(2)
(1)证明:在题图①中,
∵AC=6,BC=3,∠ABC=90°,∴∠ACB=60°.
∵CD为∠ACB的平分线,
∴∠BCD=∠ACD=30°.∴CD=2.
∵CE=4,∠DCE=30°,∴DE=2.
则CD2+DE2=EC2.∴∠CDE=90°.DE⊥DC.
在题图②中,∵平面BCD⊥平面ACD,平面BCD∩平面ACD=CD,DE平面ACD,∴DE⊥平面BCD.

(2)解:在题图②中,∵EF∥平面BDG,EF平面ABC,平面ABC∩平面BDG=BG,∴EF∥BG.
∵点E在线段AC上,CE=4,点F是AB的中点,
∴AE=EG=CG=2.
作BH⊥CD交于H.∵平面BCD⊥平面ACD,
∴BH⊥平面ACD.由条件得BH=.S△DEGS△ACD×AC·CD·sin30°=.
三棱锥B-DEG的体积V=S△DEG·BH=××
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,侧棱底面, 的中点,.

(1)求证:平面
(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,一简单组合体的一个面ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC平面ABC.

(1)证明:平面ACD平面
(2)若,试求该简单组合体的体积V.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥PABCD中,PA⊥底面ABCD,PA=2,BC="CD=2," ∠ACB=∠ACD=.

(1)求证:BD⊥平面PAC;
(2)若侧棱PC上的点F满足PF=7FC,求三棱锥PBDF的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,在正三棱锥S-ABC中,M、N分别是SC、BC的中点,且MN⊥AM,若侧棱SA=2,则正三棱锥SABC外接球的表面积是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正三棱锥中,分别是棱的中点,且,若侧棱,则正三棱锥外接球的表面积是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正三棱柱的侧面展开图是边长分别为6和4的矩形,则它的体积为(  )
A.B.4
C.D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的图像与轴围成的封闭图形绕
轴旋转一周,所得旋转体的体积为___________.

查看答案和解析>>

同步练习册答案