精英家教网 > 高中数学 > 题目详情
如图,四棱锥PABCD中,PA⊥底面ABCD,PA=2,BC="CD=2," ∠ACB=∠ACD=.

(1)求证:BD⊥平面PAC;
(2)若侧棱PC上的点F满足PF=7FC,求三棱锥PBDF的体积.
(1)见解析   (2)

(1)证明:因为BC=CD,所以△BCD为等腰三角形,
又∠ACB=∠ACD,故BD⊥AC.
因为PA⊥底面ABCD,所以PA⊥BD.
从而BD与平面PAC内两条相交直线PA,AC都垂直,
所以BD⊥平面PAC.
(2)解:三棱锥PBCD的底面BCD的面积S△BCD=BC·CD·sin∠BCD=×2×2×sin =.
由PA⊥底面ABCD,得
=·S△BCD·PA=××2=2.
由PF=7FC,得三棱锥FBCD的高为PA,
=·S△BCD·PA=×××2=,
所以=-=2-=.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图②所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连结AB,设点F是AB的中点.
图①图②
(1)求证:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B-DEG的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,三棱柱ABCA1B1C1中,AA1⊥平面ABC,D、E分别为A1B1、AA1的中点,点F在棱AB上,且AF=AB.

(1)求证:EF∥平面BC1D;
(2)在棱AC上是否存在一个点G,使得平面EFG将三棱柱分割成的两部分体积之比为1∶15,若存在,指出点G的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图甲,⊙O的直径AB=2,圆上两点CD在直径AB的两侧,且∠CAB,∠DAB.沿直径AB折起,使两个半圆所在的平面互相垂直(如图乙),FBC的中点,EAO的中点.根据图乙解答下列各题:
 
(1)求三棱锥CBOD的体积;
(2)求证:CBDE
(3)在上是否存在一点G,使得FG∥平面ACD?若存在,试确定点G的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是圆柱体的一条母线,过底面圆的圆心是圆上不与点重合的任意一点,已知棱

(1)求证:
(2)将四面体绕母线转动一周,求的三边在旋转过程中所围成的几何体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知三点在球心为的球面上,,球心到平面的距离为,则球的表面积为_________

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知球的直径SC=4,A,B是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥SABC的体积为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,正方体ABCDA1B1C1D1的棱长为2,动点E,F在棱A1B1上,点Q是棱CD的中点,动点P在棱AD上.若EF=1,DP=x,A1E=y(x,y大于零),则三棱锥PEFQ的体积(  )
A.与x,y都有关
B.与x,y都无关
C.与x有关,与y无关
D.与y有关,与x无关

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

半径为的半圆卷成一个圆锥,圆锥的体积为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案