精英家教网 > 高中数学 > 题目详情
已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:
①若m⊥α,m⊥β,则α∥β;    
②若m?α,n?α,m∥β,n∥β,则α∥β;
③如果m?α,n?α,m、n是异面直线,那么n与a相交;
④若α∩β=m,n∥m,且n?α,n?β,则n∥α且n∥β.
其中正确的命题是(  )
A、①②B、②③C、③④D、①④
分析:根据空间面面平行的判定方法,可判断①;根据面面平行的判定定理,可判断②;根据空间异面直线的几何特征,可判断③;根据线面平行的判定定理可判断④,进而得到答案.
解答:解:若m⊥α,m⊥β,则α∥β,故①正确;
若m?α,n?α,m∥β,n∥β,当m,n相交时,则α∥β,但m,n平行时,结论不一定成立,故②错误;
如果m?α,n?α,m、n是异面直线,那么n与a相交或平行,故③错误;
若α∩β=m,n∥m,n?α,则n∥α,同理由n?β,可得n∥β,故④正确;
故正确的命题为:①④
故选:D
点评:本题以命题的真假判断为载体,考查空间线面关系的判断,难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A,B是两个不同的点,m,n是两条不重合的直线,α,β是两个不重合的平面,给出下列4个命题:
①若m∩n=A,A∈α,B∈m,则B∈α;
②若m?α,A∈m,则A∈α;
③若m?α,m⊥β,则α⊥β;
④若m?α,n?β,m∥n,则α∥β,
其中真命题为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B是两个不同的点,m、n是两条不重合的直线,α、β是两个不重合的平面,则①m?α,A∈m⇒A∈α;②m∩n=A,A∈α,B∈m⇒B∈α;③m?α,m⊥β⇒α⊥β;④m?α,n?β,m∥n⇒α∥β.其中真命题为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•浙江模拟)已知A、B是两个不同的点,m、n是两条不重合的直线,α、β是两个不重合的平面,则①m?α,A∈m⇒A∈α;②m∩n=A,A∈α,B∈m⇒B∈α;③m?α,n?β,m∥n⇒α∥β;④m?α,m⊥β⇒α⊥β.其中真命题为(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省高三第一次月考理科数学试卷(解析版) 题型:选择题

已知A,B是两个不同的点,m,n是两条不重合的直线,是两个不重合的平面,给出下列4个命题:①若,,,则;②若,则;③若,则;④若,则,其中真命题为(   )

A.①③             B.①④             C.②③             D.②④

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省六安市霍邱一中高三(上)12月月考数学试卷(文科)(解析版) 题型:选择题

已知A、B是两个不同的点,m、n是两条不重合的直线,α、β是两个不重合的平面,则①m?α,A∈m⇒A∈α;②m∩n=A,A∈α,B∈m⇒B∈α;③m?α,n?β,m∥n⇒α∥β;④m?α,m⊥β⇒α⊥β.其中真命题为( )
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

同步练习册答案