精英家教网 > 高中数学 > 题目详情
直线a、b、c及平面α、β,下列命题正确的是(   )
A.若aα,bα,c⊥a, c⊥b 则c⊥αB.若bα, a//b则 a//α
C.若a//α,α∩β=b则a//bD.若a⊥α, b⊥α 则a//b
D

试题分析:A中a,b可能是平行直线,所以得不出c⊥α;B中可能aα,所以得不出a//α;C中a//α,但是a与α内的直线的位置关系不确定,所以得不出a//b;由线面垂直的性质定理知D正确.
点评:要正确解决这类题目,就要准确掌握空间中线线、线面之间的平行、垂直的判定定理与性质定理并且灵活应用.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题11分)如图,三棱锥C—ABD,CB = CD,AB = AD,∠BAD = 90°。E、F分别是BC、AC的中点。

(1)求证:AC⊥BD;
(2)若CA = CB,求证:平面BCD⊥平面ABD
(3)在上找一点M,在AD上找点N,使平面MED//平面BFN,说明理由;并求出的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:如图,在四棱锥中,四边形为正方形,,且中点.
(Ⅰ)证明://平面
(Ⅱ)证明:平面平面
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥中,底面,四边形中, ,, ,,E为中点.
(1)求证:CD⊥面PAC;(2)求:异面直线BE与AC所成角的余弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在如图的多面体中,⊥平面,的中点.

(Ⅰ) 求证:平面
(Ⅱ) 求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是三个互不重合的平面,是一条直线,则下列命题中正确的是(   )
A.若的所成角相等,则B.若,则
C.若上有两个点到的距离相等,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是不同的直线,是不同的平面,给出下列命题真命题是
A.若m⊥α,n⊥β,α⊥β,则m⊥nB.若m//α,n//β,α//β,则m//n
C.若m⊥α,n//β,α⊥β,则m⊥nD.若m//α,n⊥β,α⊥β,则m//n

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体中,E是棱的中点,则BE与平面所成角的正弦值为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

、设是两个不重合的平面,是两条不同的直线,给出下列命题:
(1)若,则  
(2)若,则
(3)若     
(4)若,则,其中正确的有         (只填序号)

查看答案和解析>>

同步练习册答案