(本小题满分12分)
已知椭圆
的中心在坐标原点、对称轴为坐标轴,且抛物线
的焦点是它的一个焦点,又点
在该椭圆上.
(1)求椭圆
的方程;
(2)若斜率为
直线
与椭圆
交于不同的两点
,当
面积的最大值时,求直线
的方程.
(1)
; (2)
。
【解析】
试题分析:(1)由已知抛物线的焦点为
,
故设椭圆方程为
………2分
将点
代入方程得
,整理得
,得
或
(舍)
故所求椭圆方程为
………5分
(2) 设直线
的方程为
,设![]()
代入椭圆方程并化简得
,
由
,可得
.
(
)
由
, ………7分
故
. 又点
到
的距离为
,
………9分
故
, ………11分
当且仅当
,即
时取等号(满足
式),
取得最大值
.
此时所求直线l的方程为
………12分
考点:本题主要考查抛物线的标准方程,抛物线的几何性质,椭圆的标准方程,直线与椭圆的位置关系,基本不等式的应用。
点评:中档题,本题求椭圆的标准方程,运用的是“待定系数法”,注意明确焦点轴和p的值。研究直线与椭圆的位置关系,往往应用韦达定理,通过“整体代换”,简化解题过程,实现解题目的。
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com